
UNCLASSIFIED

AD NUMBER:

LIMITATION CHANGES

TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB340643

Approved for public release; distribution is unlimited.

Distribution authorized to U.S. Government agencies only;
Administrative/Operational Use; Jun 2008. Other requests shall be
referred to Air Force Research Laboratory, ATTN: RITB, Rome, NY
13441-4505

AFRL memo dtd 12 Jun 2019

DEPARTMENT OF THE AIR FORCE

AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE ROME NY

MEMORANDUM FOR DEFENSE TECHNICAL INFORMATION CENTER
ATTN: MR. ROBERT STOKES
DTIC-CQ
8725 JOHN J. KINGMAN ROAD
FORT BELVOIR VA 22060

FROM: AFRL/RI STINFO
26 Electronic Parkway
Rome, NY 13441-4514

SUBJECT: Reclassification of Technical Report AFRL-RI-RS-TR-2008-160, "R-STREAM 3.0
COMPILER", June 2008.

1. AFRL/RITB requests reclassification of subject document from Distribution B, U.S.
Government Agencies Only to Distribution A, Public Release.

2. The document was initially classified as distribution B to protect technical or operational data
or information from automatic dissemination and to furthermore protect potentially patentable
information from premature dissemination.

3. Since the publication of the report in 2008, the technical or operational data or information
has been sensibly disseminated and the technology is also now protected commercially by patent.

4. Please direct any questions to Mr. Christopher Flynn, AFRL/RITA,
Christopher.Flynn.6@us.af.mil, 315-330-3249.

AFRL/RI STINFO Program Manager

Attachment:
Technical Report AFRL-RI-RS-TR-2008-160

Cc: AFRL/RIT A (C. Flynn)

12 June 2019

AFRL-RI-RS-TR-2008-160
Final Technical Report
June 2008

R-STREAM 3.0 COMPILER

Reservoir Labs, Inc.

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. P370

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES ONLY; ADMINISTRATIVE
OR OPERATIONAL USE; JUN 08. OTHER REQUESTS FOR THIS DOCUMENT SHALL BE
REFERRED TO AFRL/RITB, ROME, NY 13441-4505.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

DESTRUCTION NOTICE - For classified documents, follow the procedures in DOD 5220.22-M, National
Industrial Security Manual (NISPOM), section 5-705 or DOD 5200.1-R, Information Security Program,
Chapter VI. For unclassified limited documents, destroy by any method that will prevent disclosure of
contents or reconstruction of the document.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

Qualified requestors may obtain copies of this report from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2008-160 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

CHRISTOPHER FLYNN JAMES A. COLLINS, Deputy Chief
Work Unit Manager Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUN 08
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Apr 03 – Dec 07
4. TITLE AND SUBTITLE

R-STREAM 3.0 COMPILER

5a. CONTRACT NUMBER

5b. GRANT NUMBER
F30602-03-C-0033

5c. PROGRAM ELEMENT NUMBER
62712E

6. AUTHOR(S)

Richard Lethin, Allen Leung, Benoit Meister, Peter Szilagyi, Nicholas
Vasilache and David Wohlford

5d. PROJECT NUMBER
P370

5e. TASK NUMBER
HL

5f. WORK UNIT NUMBER
CM

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Reservoir Labs, Inc.
632 Broadway, Ste 803
New York, NY 10012

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/RITB
3701 North Fairfax Drive 525 Brooks Rd
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-160

12. DISTRIBUTION AVAILABILITY STATEMENT
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES ONLY; ADMINISTRATIVE OR OPERATIONAL USE;
JUN 08. OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO AFRL/RITB, ROME, NY
13441-4505.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes Reservoir Lab’s R-Stream compiler and mapper component developed in DARPA’s Polymorphous Computing
Architecture (PCA) program. PCAs are typically multi-core distributed memory machines without coherent global memory. R-
Stream is a source-to-source compiler. As such, it acts as a High-Level Compiler (HLC), accepting C programs with user-selected
mappable regions as input, and produces parallelized and mapped C programs as output. R-Stream is the result of a research effort
to attack the problem of automatic mapping to these important hardware attributes directly and rigorously, using the most advanced
theory in automatic high-level optimizing available, to provide a robust and extendable implementation, and to advance the state of
the theory and practice in high-level optimization.

15. SUBJECT TERMS
Polymorphic, Compiler

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

186

19a. NAME OF RESPONSIBLE PERSON
Christopher Flynn

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
315-330-3249

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

Contents

1 Introduction 1
1.1 Obtaining R-Stream . 2
1.2 Automatic Mapping . 2

1.2.1 Parallelism extraction and enhancement 3
1.2.2 Locality optimizations . 5
1.2.3 Iteration space tiling . 5

1.3 Computation and data distribution 6
1.4 Data layout optimizations . 6

1.4.1 Bulk communication generation (a.k.a. DMA generation) 7
1.5 Limitations of R-Stream . 7
1.6 Organization . 9

2 The Polyhedral Model 10
2.1 Polyhedra and polytopes . 10

2.1.1 Parameters . 10
2.1.2 Z-polyhedra . 11
2.1.3 Domain and Z-domain . 11

2.2 Modeling iteration spaces . 11
2.3 Modeling dependences . 12
2.4 Space-time mappings . 13
2.5 Example . 13
2.6 Further Readings . 15

3 Mapper Architecture 16

4 The Generalized Dependence Graph 20
4.1 Space-time mapping . 20
4.2 Dependence edges . 22
4.3 Example 1 . 22
4.4 Example 2 . 23
4.5 Related Works . 26

5 Polyhedral Mapper Infrastructure 27

6 Array Expansion 30
6.1 Related works . 31
6.2 Current algorithm . 31

6.2.1 Example . 32

7 Affine Scheduling 34
7.1 General template of affine scheduling algorithms 34
7.2 Feautrier’s algorithm . 35
7.3 Darte and Vivien’s algorithm . 35
7.4 Lim and Lam’s affine partitioning algorithm 37
7.5 Summary . 37

ii

i

7.6 Our Algorithm . 38
7.6.1 Computing “wavy” schedules 39

7.7 Summary and Related Works . 39

8 Forming Kernels: Grouping and Tiling 41
8.1 Grouping . 44
8.2 Tiling . 46

8.2.1 Orthogonal tiling . 46
8.2.2 Constraints derived from the target architecture 46

8.3 Formulation of the tiling problem 47
8.3.1 Hoisting permutable loops 47
8.3.2 Loop sinking instead of hoisting 49
8.3.3 Tilability . 51
8.3.4 Tiling as a search: beta tree 53
8.3.5 Consequences of our tiling paradigm 54
8.3.6 Implementation: generic search 55

8.4 Interaction with other mapper components 55
8.5 Future improvements . 56

9 Processor Placement 57
9.1 Algorithm . 57
9.2 Single-Program Multiple-Data (SPMD) code generation 58
9.3 Minimizing communications . 59
9.4 Eliminating host broadcasts . 59
9.5 Related works . 59

10 Local Memory Compaction 61
10.1 Motivating Examples . 61
10.2 Algorithm . 64
10.3 Group related references . 65
10.4 Hermite Decomposition . 66

10.4.1 Example 1 . 67
10.4.2 Example 2 . 67

10.5 Unimodular Reindexing . 68
10.5.1 Solving the optimization problem 69

10.6 Generating bulk communication 70
10.7 Related Work . 72

11 Multi-buffering 74
11.1 Multi-buffering with loop interchange 74
11.2 Multi-buffering with loop jamming 77

11.2.1 Shifting problem . 79
11.2.2 New multi-buffering scheme: summary 83

11.3 Hierarchical multi-buffering . 84

iii

ii

12 DMA Optimization 86
12.1 Example . 87
12.2 Algorithm . 89
12.3 Special cases . 90

12.3.1 Big packets . 90
12.3.2 Strides not allowed on one side 90
12.3.3 Strides not allowed on any sides 91
12.3.4 Bijection between both sides 91

12.4 Further optimization . 91
12.4.1 Simplifying the data transfers by transferring more 91
12.4.2 Optimizing for data transfer size 92
12.4.3 Optimizing for memory banks 92

12.5 Implementation . 93

13 Register Tiling 94
13.1 Implementation . 94

14 Array Contraction 95
14.1 Lattice based framework . 95
14.2 Algorithm . 96
14.3 Example . 97

15 Polyhedral Scanning 99
15.1 Example . 99
15.2 Formal statement . 100
15.3 Related works . 101
15.4 R-Stream’s polyhedral scanner 101
15.5 Performance improvements . 103
15.6 Code quality improvements . 105

15.6.1 Controlling domain splitting 106
15.6.2 Constraints tightening . 108
15.6.3 Predicate and stride hoisting 109
15.6.4 Controlling code duplication 111

16 The R-Stream Compiler Infrastructure 114
16.1 The Sprig IR . 114

16.1.1 Heterogeneous compilation 115
16.1.2 Source level type system 115
16.1.3 Source code regeneration 116

16.2 Scalar optimizations and analyses 116

17 Raising: IR to Polyhedral Form 117
17.1 Raising algorithm . 117

17.1.1 Pointer analysis . 118
17.1.2 Mappable region identification 119
17.1.3 Inlining . 120

iv

iii

17.1.4 Index, data and predicate values classification 120
17.1.5 If-conversion . 121
17.1.6 Statement formation . 122
17.1.7 Base address and parameters detection 123
17.1.8 Recurrence analysis . 123
17.1.9 GDG building . 126

17.2 Future extensions . 127
17.2.1 Automatic region selection and inlining 127
17.2.2 Abstract data types via struct and unions arguments . . . 127
17.2.3 Heap memory management and array delinearization . . . 127
17.2.4 Geometric recurrences . 129
17.2.5 Modulo recurrences . 129

18 Lowering: From Polyhedral Form to Target Code 131
18.1 Syntax reconstruction . 131
18.2 Algorithm . 132

19 CELL Backend 135
19.1 Local memory and DMA . 135
19.2 CELL target API . 135
19.3 DMA primitives . 136
19.4 Memory primitives . 137
19.5 Synchronization primitives . 137
19.6 Cell mapping example . 138

19.6.1 Manual SIMDization . 141

20 TRIPS Backend 144
20.1 TRIPS target API . 144
20.2 Mapping example . 145

21 SMP Backend 152

22 R-Stream and Polymorphous Computer Architectures 153
22.1 PCA program objectives . 153
22.2 PCA hardware strategy . 154
22.3 PCA software strategy . 155

22.3.1 Need for definition of “mapping” 156
22.3.2 Power and limitations of polyhedral compilers 157
22.3.3 Need for a uniform abstraction, phase fusion 158
22.3.4 Power efficiency . 158
22.3.5 Dynamic Morphing . 159

22.4 Transitions . 160
22.5 Summary . 161

v

iv

List of Figures

1 Mapper Architecture. 16
2 Polyhedral mapper software infrastructure. 27
3 Uniformization of a dependence edge. 36
4 Tiling viewed as iteration collapsing. 50
5 Tilability propagated on a β-tree. 53
6 Hierarchical multi-buffering. 85
7 Quillére’s algorithm. 102
8 Improved separation algorithm. 104
9 The R-Stream infrastructure. 114
10 Pointer analysis example . 118
11 Object summary graph . 119
12 Control structure reconstruction. 132
13 Expression building. 133
14 Idiom matching example. 134

List of Tables

1 Summary of scheduling algorithms. 37
2 CLooG versus Bungle (64-bits). 105
3 Idiom matching. 134
4 Performance of matrix multiply on PS3. 142

vi

adamsp
Typewritten Text
v

Glossary

The following terms and acronyms are used frequently across this report. Since
they are not defined for each section in which they are used, here we provide a
definition accessible at any time.

Cell : Heterogeneous chip co-developed by Sony, Toshiba and IBM (STI)
[MD05a], which contains a Power PC processor, called PPU (for Power
Processing Unit) and eight SIMD processing elements called SPUs (for
Synergistic Processing Unit) on the same chip.

FLOPS : FLoating point OPerations per Second. Standard measure of perfor-
mance that indicates how many floating-point operations are executed by
a computer per second. For a given target machine, the FLOPS can be
measured as an average over the execution of a given algorithm or as an
absolute achievable value.

FPGA : Field Programmable Gate Array. Processor made of a high number of
configurable logic blocks, which can perform a number of different func-
tions depending on their configuration. The way the blocks are connected
together is also configurable. The configuration for a whole FPGA is en-
coded as a bit stream.

GDG : Generalized Dependence Graph. This is how the part of the program
that is to be mapped is represented in R-Stream. It is a graph whose
vertices represent program statements and whose edges represent inter-
statement dependences.

HLC : High-level compiler. In the compilation scheme introduced by the Mor-
phware forum, the high-level compiler is responsible for producing a set
of sequential programs, each of which is to be executed on one process-
ing element of the target machine, after being compiled by the low-level
compiler.

HPC : High Performance Computing - supercomputing

HPEC : High Performance Embedded Computing. Embedded computing is com-
puting that is situated between sensors and/or actuators. High Perfor-
mance Embedded Computing is distinguished by being supercomputing
rates of performance associated with sensors, e.g., as in advanced radars.

IR : Intermediate representation. In compilers, this refers to any internal
representation of the program. It is an intermediate form between the
input program (the text of the source) and the output program (either the
binary executable code or the text of the target code when the compiler is
source-to-source). There may be several IRs in a compiler. In R-Stream,
while several representations are used, only one representation is named
“the IR”. It is the operator graph based representation called “Sprig”,
described in Section 16.1.

viii

vi

LLC : Low-level compiler. In the compilation scheme introduced by the Mor-
phware forum, the low-level compiler is responsible for compiling programs
for a single processing element. Such a program can be the output of the
High-Level Compiler.

PCA : Polymorphous Computer Architecture. A class of computer architecture
that achieves high computational efficiency (FLOPS/W) on a broad class
of applications and that is programmable. The term was coined in the
2001-2007 DARPA program of this name to produce instances of these
architectures, and the programming tools for them. These architectures
achieve their versatility through the use of parallelism, distributed local
memories for data and instructions, explicit control of communication and
memory, SIMD aspect, tiling and replication of functional units. Commer-
cial architectures have appeared which exhibit these features, such as Cell.

PE : Processing element. A processor that is part of a set of processors
across which R-Stream is expected to distribute computations of an input
program. In the current machine model, such a set is organized as a grid,
i.e., a dense hyper-rectangular set.

SIMD : Single-Instruction, Multiple Data. Instruction set and – by extension
– processor that executes the same instruction on several data at once.
Many modern processors have SIMD capabilities.

SIMDization : Program transformation that attempts to exploit the SIMD features of
a processor.

SMP : Symmetric Multi-Processor. A homogeneous grid of processing elements
in a shared memory machine.

SWEPT : Size Weight Energy Power Time. These are metrics of performance,
beyond simply the execution time, that are particularly relevant in the
HPEC application domain, and rapidly becomming important in the HPC
application domain.

TRIPS : Stands for Tera-op, Reliable, Intelligently adaptive Processing System.
TRIPS [BKM04, SNG+06] is a chip developed at the Computer Science
Department of University of Texas as part of the DARPA PCA program.
It carries a homogeneous grid of processing elements (called tiles) on a
single chip.

ix

vii

1 Introduction

This report describes Reservoir Lab’s R-Stream compiler and mapper component
developed in DARPA’s Polymorphous Computing Architecture (PCA) project.

Mapping in our context is the process of transforming sequential programs
into efficient parallel code to be executed on PCAs, which are a new generation of
high performance architectures with very high potential computational efficiency
(FLOPS/W) yet which are programmable.

Automatic mapping is a critical technology for achieving the potential of
these architectures, because these chips simultaneously achieve high FLOPS/W
and programmability by otherwise compromising on the complexity of the pro-
gramming task. The goal of automatic mapping is to make programmers pro-
ductive: to broaden the set of programmers who can achieve the potential of
the architectures beyond a few gurus who hand-code the application or limited
libraries, and to make even more complex variants of the architectures usable
by the gurus.

The application domain that we address is high performance scientific, signal
and image processing. To further restrict the domain to make the mapping
problem tractable, we will assume that the input programs are mainly static
control programs that operate on dense matrices and arrays. This is the class
of programs consisting of do-loops with loop bounds that are affine functions
of outer indices and parameters, and array indexing functions that are affine
functions of loop indices and parameters. Irregular data structures like sparse
matrices are not considered. Even with those application domain restrictions,
constructs outside of this model, such as data dependent conditionals and non-
affine array indices, are handled conservatively.

PCAs are typically multi-core distributed memory machines without coher-
ent global memory.1 Thus in addition to partitioning the program and data
into a distributed form, the mapper is also responsible for inserting explicit
communication and synchronization between processing elements at strategic
points in the mapped program. Exposed architectural features, such as Direct
Memory Access (DMA) controllers, Single-Instruction-Multiple Data (SIMD)
arithmetic engines, scratch-pad memory, hardware FIFOs and reconfigurable
dataflow networks, also have to be explicitly managed by the mapping.

R-Stream is a source-to-source compiler. As such, it acts as a High-Level
Compiler (HLC), accepting C programs with user-selected mappable regions
as input, and produces parallelized and mapped C programs as output.2 The
output of R-Stream is the input program mapped to the target architecture, to
the exposed architectural features of PCA targets. Executing the output code
requires a Low-Level Compiler (LLC) to accept the mapped program, and to

1Although some of our target architectures do have shared memory, it is less efficient than
using memories local to the computation units, with communication and synchronization
managed explicitly.

2Significant engineering is present in R-Streamso that the C output looks readable, pre-
serves debuggability, and to generate idiomatic forms that work well with different Low-Level
Compilers (LLCs). C is chosen for convenience. For some of our projects, e.g., our output
stages can produce the result in languages other than C, e.g., in FPGA-specific languages.

1

generate code for the individual accelerator engines or host processors, using
the widely and relatively generic compiler technologies for instruction selection,
instruction scheduling, register allocation, and so forth.

R-Stream is the result of a research effort to attack the problem of automatic
mapping to these important hardware attributes directly and rigorously, using
the most advanced theory in automatic high level optimizing available, to pro-
vide a robust and extendable implementation, and to advance the state of the
theory and practice in high level optimization.

1.1 Obtaining R-Stream

R-Stream is available now for use, research, and evaluation:

1. Government employees can obtain the source, binaries, and documen-
tation, by contacting the cognizant program officer, Christopher Flynn
of AFRL, (315) 330-3249, Christopher.Flynn@rl.af.mil, 25 Brooks Rd.,
Rome, NY 13441-4505. R-Stream is under active development, so Reser-
voir Labs will endeavor to provide updated distributions upon request
directly to U.S. government departments, as well as support and cus-
tomization as required. Reservoir Labs is interested in and able to apply
and extend R-Stream for government programs with HPC and HPEC com-
ponents. Government contractors and FFRDCs should contact Reservoir
Labs directly.

2. For academic collaboration, Reservoir Labs has developed a model license
for universities. In this license, Reservoir Labs provides source code to the
univeristy to enable their research in advanced compilers, programming
languages, and high performance computing, based on R-Stream. Reser-
voir Labs can optionally be a research collaborator, and is available as a
motivated commercial entity and channel for transitioning and proliferat-
ing the results of such university results into use. The license provides also
for university commercialization of the results. Please contact Reservoir
Labs directly for more information.

3. Finally, Reservoir Labs is executing projects of commercial transition of
this research technology in a number of forms, including executables tar-
geted to specific advanced processors. Reservoir Labs is providing cus-
tomization and support, and is using R-Stream as the basis for a number
of advanced research and development projects. Commercial entities with
interest in using or applying R-Stream should contact Reservoir Labs di-
rectly.

1.2 Automatic Mapping

User-selected mappable regions are mainly computationally intensive program
fragments in the form of static control programs, that is, imperfect loop nests
operating on arrays where the loop bounds and array indices are affine functions

2

mailto:Christopher.Flynn@rl.af.mil

of the indices of enclosing loops and incoming parameters. Such program frag-
ments constitute the main kernel or kernels of many existing high-performance
computing (HPC) and high-performance embedded-computing (HPEC) appli-
cations.

The R-Stream mapper expects minimal user-provided hints are provided to
direct the mapping process. In contrast to other programming paradigms, like
for instance those of OpenMP and MPI, in which the programmer has to specify
the parallelism, locality and/or the grain of communication he wants to exploit,
R-Stream uses automatic program transformation techniques to derive the final
mapped program. The mapper customizes the mapping process by referring to
the machine model of each target architecture.

The novel automatic program transformation techniques form the core of
the R-Stream mapper. These are described in the following subsections.

1.2.1 Parallelism extraction and enhancement

Unlike traditional vectorizing compilers, R-Stream is able to obtain both fine-
grained (inner-loop) and coarse-grained (outer-loop) parallelism within the same
framework. Exploiting parallelism at the coarse-grain level is necessary to amor-
tize the startup cost of interprocessor communication, which is frequently non-
trivial. Exploiting fine-grain parallelism is necessary to take advantage of in-
struction level parallelism (ILP), SIMD parallelism, or parallelism available in
reconfigurable dataflow networks embedded in a PCA processor.

For example, the sequential loop:

for (i = 0; i < N; i++)

for (j = 0; j < M; j++)

A[i][j] = A[i-1][j+1];

can be transformed into a loop nest with fine-grained parallelism via loop re-
versal and interchange:

for (i = 1-M; i <= 0; i++)

doall (j = 0; j < N; j++)

A[j][-i] = A[j-1][1-i];

or restructured into a loop nest with coarse-grained parallelism via loop skewing,
which consists in combining inner loop variables with affine combinations of
outer loop variables:

doall (i = 0; i < N+M-1; i++)

for (j = max(0, 1+i-M); j < min(N-1, i-1); j++)

A[j][i-j] = A[j-1][i-j+1];

We approach the problem of parallelism extraction via affine scheduling,
which generalizes and improves on classical loop transformation techniques.

3

Unlike the latter, affine scheduling is not restricted to perfectly nested loops,
unimodular transformations, or single statement/single body loop nests.

For example, using affine partitioning, a variant of affine scheduling, the
following imperfectly nested loops:3

for (i = 1; i < n; i++) {
for (j = 0; j < n; j++) {

for (k = 0; k < n - j; k++)

a[i][j+k] = a[i][j+k] + a[i-1][j+k] * b[j][k];

for (k = 1 + j; k < n; k++)

a[i][k] = a[i][k] - a[i][j] * b[n-j-1][k];

}
}

can be transformed into a loop nest with coarse-grained parallelism:

if (n >= 2)

a[1][0] = a[1][0] + a[0][0] * b[0][0];

for (i = 2; i < n; i++) {
doall (j = 1; j < i; j++) {
for (k = j-1; k < 0; k++) {
a[j][i-j] = a[j][i-j] + a[j-1][i-j] * b[i-j+k][-k];

a[j][i-j] = a[j][i-j] - a[j][i-j+k] * b[-i+j-k+n-1][i-j];

}
a[j][i-j] = a[j][i-j] + a[j-1][i-j] * b[i-j][0];

}
a[i][0] = a[i][0] + a[i-1][0] * b[0][0];

}
for (i = n; i < 2*n-1; i++) {

doall (j = 1+i-n; j < n; j++) {
for (k = j-1; k < 0; k++) {
a[j][i-j] = a[j][i-j] + a[j-1][i-j] * b[i-j+k][-k];

a[j][i-j] = a[j][i-j] - a[j][i-j+ k] * b[-i+j-k+n-1][i-j];

}
a[j][i-j] = a[j][i-j] + a[j-1][i-j] * b[i-j][0];

}
}

The above loop nest can in principle be obtained from the original by apply-
ing a carefully guided sequence of loop reversal, interchange, skewing, reversal,
and fusion in a traditional loop restructuring framework, although the current
example is likely to exceed the capability of most implementations. With affine
scheduling techniques, the same result can be obtained via much more direct
means.

We shall describe our implementations of these techniques in Section 7.

3This example is taken from [LL97].

4

1.2.2 Locality optimizations

Locality is a critical criterion to efficient execution on multi-core and distributed
memory architectures. Locality can be observed in various system levels, from
registers to memory, from different on-chip cores to within a system as a whole.

Traditionally, we say that temporal locality is obtained when the same mem-
ory element is accessed within a small window of time during execution. Gener-
ally, spatial locality is obtained when elements of a contiguous zone of memory
(that typically translates to a cache line, a memory page, a processing element’s
local memory, etc.) are accessed successively or within a short amount of time.

Consider two statements s1 and s2. If iteration i1 of statement s1 accesses
the same data element as iteration i2 of statement s2, temporal locality of these
accesses is achieved if i1 and i2 are executed successively or within a short
amount of time. As there are usually many such instances of (i1, i2), the loops
must be restructured so that s1 and s2 are consecutive statements of a same
loop and that i1 is close (or equal) to i2. This restructuring transformation is
known as fusion in the literature. See below:

// After fusion

for (i = ...) for (i = ...) {
S1; S1;

for (i = ...) S2;

S2; }

This is also true for a single statement: if two iterations of the statement
access the same memory element, they should be executed consecutively or
within a short amount of time. Indeed this can be seen as a particular case
of fusion. In this case, particular array references may reuse a given memory
element for a number of times that depends only on the loop bounds.

For example, the following loop nests on the left can be transformed into the
loop nests on the right, which has better temporal locality.

// Better temporal locality

for (i = ...) for (j = ...)

for (j = ...) for (i = ...)

r += A[j] * C[j]; r += A[j] * C[j];

1.2.3 Iteration space tiling

Spatial and temporal locality of a program can also be improved by blocking or
iteration space tiling (or tiling for short.) A classical example of tiling is the
transformation of a matrix multiply loop nests, shown below,

for (i = 0; i < 127; i++)

for (j = 0; j < 127; j++)

5

for (k = 0; k < 127; k++)

C[i][j] += A[i][k] * B[k][j];

into the following tiled loop nests:

for (i = 0; i <= 112; i += 16)

for (j = 0; j <= 112; j += 16)

for (k = 0; k <= 112; k += 16)

for (l = i; l <= i + 15; l++)

for (m = j; m <= j + 15; m++)

for (n = k; n <= k + 15; n++)

C[l][m] += A[l][n] * B[n][m];

The large matrices have been split into 16 × 16 submatrices. Because elements
of these submatrices are repeatedly accessed together within the innermost
(l,m,n) loop nests, space locality has been improved.

The R-Stream mapper also uses tiling to form parallel tasks to be executed on
the grid of processing elements. In a shared memory system, each task can mod-
ify a limited amount of data (that hopefully fits in the cache) before processing
another data set. In a distributed memory environment, each such task is meant
to have its own local memory space. By chosing which statements constitute a
tile and by adjusting the tile sizes, we can reduce the number of cache misses
(in shared memory) or the amount of communication (in distributed memory).
Our tiling algorithm will be presented in Section 8.

1.3 Computation and data distribution

Tasks formed in the tiling phase have to be distributed onto processors in such
a way that they can be executed in parallel. This is called processor placement.
Efficient placement strategies aim to reduce the amount of broadcasts and peer-
to-peer communications – between the host and the processing elements and
among the processing elements – and the distance between communicating pro-
cessing elements.

The approach chosen in R-Stream follows the computer owns rule. Tasks are
mapped onto the space of processors with the goal of improving locality and
minimizing communications. After placement, the communications necessary
for a given computation can then be derived.

Section 9 describes the R-Stream placement algorithm in details.

1.4 Data layout optimizations

Tasks that are mapped onto different processors have to communicate with
each other and with the main host processor. When migrating data from one
processor to another, we have a further opportunity to change the data layout
to improve storage utilization and locality of references. For example, when
inserting explicit communication into the loop

6

double A[300,300];

...

for (i = 0; i < 100; i++) {
... = ... A[2*i+100,3*i] ...;

}

we can utilize a different layout the array A in local memory:

double A_local[100];

...

Transfer data from A[2*i+100,3*i] to A_local[i]

for (i = 0; i < 100; i++) {
... = ... A_local[i] ...;

}

Transforming the reference from A[2*i+100,3*i] to A_local[i] reduces the
storage requirements of local memory from 300× 300 elements to 100 elements.

Section 10 will be devoted to our local memory compaction algorithms that
perform this task.

1.4.1 Bulk communication generation (a.k.a. DMA generation)

Communication commands created in the mapping process have to be physically
realized as actual operations supported by the underlying architecture, through
either system calls (to DMA engines), library calls (such as the Message Passing
Interface (MPI), or RASClib [SGI07] in the case of SGI FPGA servers such as
the RC100) or calls to an abstraction layer which is part of R-Stream (as in the
case of Cell and TRIPS).

This is the job of the bulk communication generation (also referred to as
DMA optimization for short, see Section 12) component of the mapper.

On some architectures like the Cell [MD05b, GHF+05, GHF+06] and TRIPS
[BKM04, SNG+06], communication commands are mapped into operations to
the DMA engines issued from the PE’s. On other architectures, such as some
FPGA systems, they are turned into buffer management and DMA operations
to be issued on a host processor.

1.5 Limitations of R-Stream

As the product of a research project, the R-Stream has certain limitations. While
it illustrates and provides a proof of concept for the use of polyhedral methods
for optimization to PCAs, it is not yet a tool suitable for “production use.”

Some of the limitations arise from the polyhedral approach. The scope of ap-
plicability of the technique is currently limited to the class of programs that are
structurally able to be raised to the polyhedral model, and which do not have ex-
pression level problems that prevent the raising phase from inferring important

7

properties, e.g., that arrays are abstract. We can extend the scope of applicabil-
ity through improvements to the analyses that support raising, e.g., better alias
analysis to determine abstractability of arrays, or privatization transformations
for regions of code that would otherwise be unraisable. The structural scope
can be extended through approximations; for example, we are working to extend
the scope to include loops that include conditionals through the introduction of
predication to the representation, and working this through the mapper.

The polyhedral approach also imposes limits based on the scalability of the
underlying algorithms. The expanded scope and precision and transformations
available in the polyhedral approach comes at a cost in the computational com-
plexity of the optimizations. This limits the size of loop nests that we can
currently optimize to the hundreds of lines. We are actively working on improv-
ing the scale and performance of the mapper through better algorithms and
better implementations. We do not see any reason why one shouldn’t be able
to scale algorithms to be able to optimize loop nests with 10’s of thousands of
lines.

A further limitation to the polyhedral approach is that it is restricted to
dependence preserving transformations. In many cases, the optimal transfor-
mation for a given application involves changes at a higher level, e.g., algorithmic
changes. The simplest example of this is changing a reduction from a recurrence
to being a parallel prefix - such a change involves exploiting the associativity of
the arithmetic operators to rewrite the dependence graph of the computation.
However, more complex transformations are often needed, such as implement-
ing a QR decomposition algorithm using a Givens based algorithm instead of a
Householder algorithm. R-Stream is based on the assumption that the user has
chosen the right algorithm. In future research, we will explore higher level algo-
rithm transformation frameworks. Existing frameworks in the literature often
suffer from the inability to predict the performance of a given variant in their
algorithm search. There is an opportunity in forward research to study the in-
teraction of these searches with downstream optimizations using the polyhedral
model.

Limitations in R-Stream arise from our particular choice and implementation
of mapping phases. Choices made by upstream mapping phases are often guesses
about what downstream phases will do. These guess can turn out to be wrong,
reducing performance. We are currently working on improvements to the phase
architecture of the mapper, working to combine the phases in some cases, or to
tune the tradeoffs.

There are some bugs in the mapper that are due to use of approximations,
that we are working to address. For example, in the communication generation
phase, there are some “edge case” bugs where dependences might be violated in
the output code, due to the use of approximations in the code representation.
We have implemented more precise representations and are working to fix the
mapper now.

In general, R-Stream needs more tuning and use. We need to better char-
acterize the benefits and limitations of the mapper. Since this is a recent and
leading edge optimization tool, little is known about the performance and limi-

8

tations of it.
Reservoir Labs is actively working on these limitations in internal and fol-

low on research projects, and as we apply R-Stream to more architectures and
application domains.

1.6 Organization

The rest of this report is organized as follows. Section 2 gives a brief intro-
duction to the polyhedral model, the mathematical framework of the R-Stream

mapper. The architecture of the mapper is presented in Section 3. Section 4
then describes the internal representation of the R-Stream mapper called the
generalized dependence graph. Sections 6, 7, 8, 9, 10, 11, 12, 13 and 14 then
describe the inner workings of various mapper optimizations and transforma-
tions in details. In Section 15, we present the code generation algorithm of the
mapper.

In Section 16, we take a longer view by examining the entire R-Stream com-
piler infrastructure and describing how the mapper fits into the overall frame-
work. In Sections 17 and 18 we present the raising and lowering algorithms,
i.e., the conversion algorithms the R-Stream intermediate representation to the
polyhedral representation used by the mapper. Finally, in Sections 19, 20 and
21 we describe the details of code generation for specific architectures.

9

2 The Polyhedral Model

The polyhedral model is a linear-algebraic mathematical formalism used in the
R-Stream mapper for modeling and transforming static control programs. Static
control programs are composed of do-loops with loop lowerbounds, loop up-
perbounds, and array indexing functions that are affine functions of outer loop
indices and unknown symbolic parameters.

We can summarize the class of programs using the following Backus-Naur
Form:

parameters ::= M, N, . . .

arrays ::= A, B, C, . . .

loop indices ::= i, j, k, . . .

e ::= affine expressions of indices and parameters

S ::= A[e] = f(A1[e1], . . . , An[en])

| for i = e . . . e do S

| S; S; . . .

2.1 Polyhedra and polytopes

As evident from its name, in the polyhedral model we are mainly interested
in modeling our loop nests using polyhedra and objects related to polyhedra.
A polyhedron can be specified in various equivalent ways. For example, we can
define a polyhedron as the conjunction of m linear constraints {x ∈ Rn | Ax+b ≥
0} where A ∈ Rm×n and b ∈ Rm, or explicitly as a Minkowski sum of lines
{l1, . . . , ln}, n ≥ 0, rays {r1, . . . , rm}, m ≥ 0, and vertices {v1, . . . , vk}, k ≥ 1:

P = lin.space{l1, . . . , ln} + cone{r1, . . . , rm} + convex{v1, . . . , vk} (1)

where

lin.space{l1, . . . , ln} = {
∑

1≤i≤n αili | αi ∈ R, i ≤ 1 ≤ n} (2)

cone{r1, . . . , rm} = {
∑

1≤i≤m βiri | βi ≥ 0, 1 ≤ i ≤ m} (3)

convex{v1, . . . , vk} = {
∑

1≤i≤k γivi | 0 ≤ γi ≤ 1,
∑

1≤1≤k γi = 1} (4)

A polyhedron lacking lines and rays is bounded, and is called a polytope.

2.1.1 Parameters

The polyhedral model can elegantly model programs with symbolic integer pa-
rameters using parametric polyhedra, as long as these parameters are only used
in an affine context. For example, a parametric polyhedron with p parameters
can be defined in the similar manner as a polyhedron, as the intersection of a
suitable number of constraints: {x ∈ Rn | Ax + By + b ≥ 0} where A ∈ Rm×n,
B ∈ Rm×p and b ∈ Rm.

10

2.1.2 Z-polyhedra

Since loop indices and array indices are integers, we frequently have to restrict
ourselves to consider only integral points within a (parametric) polyhedron. A
Z-polyhedron Z is the intersection of a polyhedron P with an integer lattice L,
where L can be defined as {Ax + b ≥ 0 | x ∈ Zd} for some appropriate matrix
A and vector b.

2.1.3 Domain and Z-domain

A polyhedron is a convex set. However, many of the sets that appear in map-
ping, such as data footprints and communication sets, are non-convex. Thus
for convenience, we frequently manipulate domains and Z-domains rather than
polyhedra and Z-polyhedra. A domain is a finite union of polyhedra, while a
Z-domain [QRR96, NR00] is a finite union of Z-polyhedra. Both domain and
Z-domain are closed under set operations such as union, intersection, difference,
and image and preimage operations under affine functions [GR07, SL06, SLM07].
In terms of the same expressiveness, Z-domains are identical to Presburger sets.

2.2 Modeling iteration spaces

There are a few general steps when using all the above machinery to model a
static control program.

The first step is to assign each iteration of a statement a unique coordinate.
We can accomplish this as follows. Suppose we are given a do-loop program
with statements S1, . . . , Sn.

An iteration of a statement is called an operation, which can be specified by
annotating the statement with the values of all the loop counters in which the
statement is nested, from the outermost to the innermost. We can write this
as 〈S, x〉. The iteration vector x represents the value of the loop counters. Its
number of dimensions is the number of loop counters.

The iteration vector of a statement S is constrained by all the loop bounds
which enclose it (i.e., its iteration space or iteration domain.)

For example, the loop nests below contains two statements, S1 and S2.

for (int i = 0; i < n; i++) {
for (int j = i+1; j < m; j += 2) {

A[i][j] = i+j; // S1

}
for (int j = i+1; j < min(m, i+10); j++) {

A[i][j] += 10; // S2

}
}

11

The iteration spaces of the two statements are:

D1 = {[i, j] ∈ Z2 | ∃k ∈ Z.Z2 | 0 ≤ i < n, i + 1 ≤ j < m, j − i − 1 = 2k} (5)

D2 = {[i, j] ∈ Z2 | i ≤ 0 < n, i + 1 ≤ j, j < m, j < i + 10} (6)

Note that both D1 are D2 are parametric in terms of the symbolic unknowns m
and n.

2.3 Modeling dependences

The second step to model a static control program is to identify when two oper-
ations may be executed in parallel, or when one must precede another because
of a producer-consumer relationship. We do this by capturing all the depen-
dences. Given any two statements S and T , let RST denote the dependence
relation between operations in S and T . That is, if 〈S, x〉 depends on 〈T, y〉,
then (x, y) ∈ RST .

We can define RST in a static control program precisely as follows. Let the
sequencing predicate 〈S, x〉 ≺ 〈T, y〉 denotes true iff operation 〈S, x〉 is executed
before 〈T, y〉 in the original loop nests. Suppose statement S contains only one
reference to A[fS(x)] and statement T contains only one reference to A[fT (x)],
and the two references induce a dependence.4 Using the relation ≺ and the
iteration spaces of S and T , we can define RST as:

RST =

[x, y] |

fS(x) = fT (y),
x ∈ DS ,
y ∈ DT ,

〈S, x〉 ≺ 〈T, y〉

(7)

The same approach can be generalized if S and T contains multiple references;
RST simply contains the union of all the dependence relations computed from
each pair of references.

The sequencing predicate ≺ can be defined from the structure of the loop
nests as follows. Given S and T , let NST be the maximal depth of the loop nest
in which S and the T . Let TST be a boolean flag which is true iff S precedes T
textually in the program. Then we can define ≺ as:

〈S, x〉 ≺ 〈T, y〉 ≡ x[1 . . . NST] ≺lex y[1 . . .NST] ∨ (8)

(x[1 . . . NST] = y[1 . . .NST] ∧ TST)

where ≺lex is the lexicographical order.
Note that when the program input falls under scope of static control pro-

grams, dependence relations represent a program’s dependences exactly. Other
dependence representations in traditional parallelization compilers, such as de-
pendence vectors and direction vectors, are merely approximations.

4That is, at least one reference is a write reference.

12

2.4 Space-time mappings

Finally, we would like to specify the temporal order for all the operations that the
processor will perform and where they should be performed. In fact, mapping,
in the simplest sense, is nothing more than specifying these two attributes.

One of the most general ways to do this is to associate each operation 〈S, x〉
with a space-time mapping:

ΘS(x) =

[

s(x)
t(x)

]

where s(x) specifies the processor element where operation 〈S, x〉 is to be exe-
cuted, and t(x) specifies its execution time. Note that we allow both s and t to
be multidimensional functions. Here is how s and t can be interpreted.

For the former s(x), we can interpret the co-domain of the function as the
processor space. For example, if the target of our mapping is a two dimensional
processor grid of size N × M , then the most natural co-domain of s is a set of
ZN × ZM .

For the latter t(x), we can interpret “time” as a multiple dimensional space.
Note that time in this sense is often merely a logical device for imposing order;
that is, it does not have to correspond to any physical time units. The only
imposition we make of it is that the logical time obeys a total lexicographical
order, that is, given t(x) ≺lex t(y), then operation 〈S, x〉 executes before 〈S, y〉
in the mapping.

For a space-time mapping to be correct, it must preserve the dependences
in the original program, i.e.,

∀(x, y) ∈ RST , ΘS(x) ≻lex ΘT (y) for all statements S and T . (9)

where RST stands for the appropriate dependence relation between statement
S and T . This is essentially the mathematically equivalent of the statement:
“if operation 〈S, x〉 depends on operation 〈T, y〉, 〈S, x〉 must be scheduled after
〈T, y〉.” That is, dependences must be preserved.

2.5 Example

As an example, consider the following simple loop nests:

for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++) {

a[i][j] = a[i][-1 + j] + a[j][i]; // S

}
}

The iteration domain of the statement S is D = {[i, j] ∈ Z2 | 1 ≤ i ≤ n, 1 ≤ j ≤
n}.

13

Since there is only one statement, there is only one dependence relation R,
computed from two pairs of references (a[i][j], a[i][j-1]), and (a[i][j],
a[j][i]).

R =
{[[i, j], [i′, j′]] | i = i′, j = j′ − 1, [i, j] ∈ D, [i′, j′] ∈ D, 〈S, [i, j]〉 ≺ 〈S, [i′, j′]〉} ∪
{[[i, j], [i′, j′]] | i = j′, i = j′, [i, j] ∈ D, [i′, j′] ∈ D, 〈S, [i, j]〉 ≺ 〈S, [i′, j′]〉}

According to the definition, the relation ≺ can be written as:

〈S, x〉 ≺ 〈S, y〉 ≡ x ≺lex y

The above can be simplified as rewritten as the union of the following two
relations:

Target Source Dependence Relation Type
a[i,j] a[j,i] {([i, j], [j, i]) | 1 ≤ j, i ≤ n,−j + i − 1 ≥ 0} true,anti
a[i,j] a[i,j-1] {([i, j + 1], [i, j]) | 1 ≤ j ≤ n − 1, 0 ≤ i ≤ n} true

We can obtain the following 1-D scheduling which satisfies the above depen-
dences:

Θ(i, j) = 2i + j

It can be interpreted simply: iteration (i, j) of the loop nests is to be executed
at time step 2i + j. For example, at step 4 iterations (0, 4), (1, 2), and (2, 0)
should be executed.

This schedule, when rendered in traditional loop nests form, actually repre-
sents the following parallelized program fragment:

for (i = 3; i <= 3 * n; i++) {
doall (j = max(i-n, ⌊(i+1)/2⌋);

j <= min(i-1, ⌊(i+n)/2⌋); j++) {
a[i-j][2*j-i] = a[i-j][2*j-i-1] + a[2*j-i][i-j];

}
}

In this simple example, we can show that the schedule is valid according to
(9) by verifying that these constraints hold manually:

Θ(i, j) − Θ(j, i) > 0 for all 1 ≤ j, i ≤ n,−j + i − 1 ≥ 0 (10)

Θ(i, j + 1) − Θ(i, j) > 0 for all 1 ≤ j ≤ n − 1, 0 ≤ i ≤ n (11)

Constraint (10) is equivalent to:

(2i + j) − (2j + i) > 0 for all 1 ≤ j, i ≤ n,−j + i − 1 ≥ 0

i − j > 0 for all 1 ≤ j, i ≤ n,−j + i − 1 ≥ 0

14

and constraint (11) simplifies to:

(2i + j + 1) − (2i + j) > 0 for all 1 ≤ j ≤ n − 1, 0 ≤ i ≤ n

1 > 0 for all 1 ≤ j ≤ n − 1, 0 ≤ i ≤ n

How Θ can be computed automatically will be described in Section 7, where
we present the scheduling algorithms in the R-Stream mapper.

2.6 Further Readings

A full introduction to the polyhedral model is beyond the scope of this report.
Interested readers may refer to [Fea96], [Len93], [DRV00], and [Vas07](Chapter
2) for more comprehensive introductions to this rich topic.

15

3 Mapper Architecture

Figure 1 shows the basic structure of the current mapper in relation to the
rest of the R-Stream compiler infrastructure. To make it possible to develop
the mapper and the compiler as two separate entities, the mapper is structured
as a self-contained (albeit highly complex) optimization phase, from the view
of the R-Stream compiler. The core compiler infrastructure and the mapper
communicate with each other only through a narrow interface.

Core compiler
infrastructure

Dependence analysis

Array expansion

Affine scheduling+fusion

Tiling

Processor placement

Local memory compaction

DMA optimization

Synchronization
generation

Code generation

Unroll and Jam

Thread creation

��

��

parallelized code��

coarse-grained tasks��

processors placements��

local array placement��

DMA commands
��

��

FPGA //

��
oo

GF

@A

SMP

//

GF

raising

EDOO

BC@A

lowering

OO

Figure 1: Mapper Architecture.

The core compiler infrastructure is responsible for providing the following
important services:

Scalar optimizations Classical SSA-based scalar optimizations, such as con-
ditional constant propagation [WZ91], value numbering [Cli95, CS95],

16

strength reduction [CSV01], etc. are performed on the input programs
in order to eliminate redundancies in the input code.

Region selection The compiler has to determine which regions of code in the
application program can and should be processed using the mapper. We
call such sections of code mapped regions.

Raising Mapped regions of code are translated into the polyhedral form re-
quired by the mapper.

Lowering After mapping, the mapped code in polyhedral form are translated
back into loop nests required by the compiler through the code generation
phase. Special target dependent APIs may be inserted at this point. If
required, the compiler can also perform traditional optimizations to reduce
redundancies in the mapped code as a post-processing step.

Idiomatic target code output Aside from aesthetic considerations, we have
found that the binary produced by many LLCs (Low-level Compilers, the
compilers that accept the output of R-Stream) performs significantly worse
when taking complex machine-generated C code as input than when com-
piling code written by a person. Those LLCs “key” on specific syntactic
patterns for idiomatic transformation strategies that are lost when se-
mantically equivalent code does not use those patterns. Thus a high level
syntax recovery [Cif93, Cif94] is performed to produce output code that
resembles idiomatic C written by a human rather than the internal dump
of a compiler.

If we delve into the structure of the mapper, the following subcomponents
appear:

Dependence analysis This phase analyzes the program in question and gen-
erates the appropriate dependence graph.

Array expansion The array expansion phase is used to improve the available
parallelization by performing scalar and array expansion.

Affine scheduling and fusion The next step is affine scheduling. It extracts
coarse grained parallelism from the input loop nests. Next, a fusion step
is performed, which attempts to improve the locality of reference of the
parallelized code.

Tiling The affine scheduling phase generates coarse-grained but resource-unconstrained
parallelism. In order to ensure to that the data footprint of the loop nests
fit into the available memory of the target processor, the iteration spaces
of the statements are partitioned into hyperrectangular “tiles” in the tiling
phase. The tiling process attempts to choose the proper size and shape so
as to maximize the locality of reference and utilization of memory while
minimizing communication. Each of the resuling tiles form a logical task
to be executed on a process as a single unit.

17

Processor placement The tiling phase assumes an infinite number of proces-
sors in a virtual processor space, while real hardware, of course, contains
a finite number of these. A typical architecture is structured as a reg-
ular grid in Zp, where p is typically 1 or 2. In the processor placement
phase, we fold the virtual processor space in Zd, where d is the number
dimensions in the loop nests, back into a finite processor grid in Zp.

Distributed memory mapping On a distributed memory architecture, each
processor has an associated local memory. The mapper has to perform
extra local data layout and communication generation tasks. These are:

Local memory compaction This phase takes the processed loop nests
and attempts to migrate all array references to local memory. The
physical layout of the (local) arrays and loop access expressions can
be altered in this process.

Communication and DMA generation When migrating array refer-
ences from global to local memory, we also have to insert communi-
cation operations at the appropriate places. To ensure that all com-
munication is coarse-grained in nature, we batch all communications
and only insert such communications at tile boundaries. To further
enhance the effectiveness of the mapper, we use multi-buffering to
prefetch data, and maximize the overlap of computation and com-
munication. Communication operations are subsequently mapped
into the target architecture-provided DMA operations. This map-
ping step chooses a suitable set of DMA operations, constrained by
the capabilities of the hardware.

These tasks are omitted when mapping for a symmetric multiprocessor
(SMP) architecture.

Synchronization generation The synchronization phase inserts synchroniza-
tion primitives to ensure proper execution of the mapped program.

Jam A form of unroll and jam (without the unrolling) is used to extract extra
fine-grained vector and pipeline parallelism. These are useful for SIMD
and FPGA targets.

FPGA mapping For mapping certain FPGA-accelerated targets, that have
an execution model where the accelerator is tightly coupled to the host,
an extra component is needed:

Thread generation in the FPGA targets we have considered, FPGA re-
quires DMA and synchronization to be performed on the host proces-
sor. Thread generation is the process of splitting the parallelized loop
nest into two parts: (i) computation-only kernels to be mapped onto
the FPGA, (ii) synchronization and DMA operations to be placed
on the host processor.

18

Code generation Finally, in the code generation phase we convert the mapped
program in polyhedral form back into loop nests.

19

4 The Generalized Dependence Graph

The main intermediate representation of the R-Stream mapper is the generalized
dependence graph (GDG). All phases of the mapper take the GDG as an input
and produce a modified GDG as output. Unlike more traditional and syntacti-
cally oriented representations for loop level optimizers, such as abstract syntax
trees, the GDG summarizes all the relevant details of a set of loop nests to be
optimized in a mathematical form suitable for polyhedral optimizations.

A GDG is a multi-graph G = (V, E,C) where the nodes V are the set of state-
ments in the program to be mapped, and E ∈ V × V are the set of dependence
edges between these statements, and C ⊂ Zgp is the context of the system, and
gp is the number of global parameters5 where the context represents constraints
on the global parameters or system parameters.

To each statement S ∈ V in the GDG, we attach the quadruple (DS , RS , pS , ΘS),
where DS is the iteration domain of S, RS is a set of array references of the
form A[g(x)], pS is a predicate function on the subset of array references RS ,
and Θ : Zd+gp → Z2d+1 is the space-time mapping of S. The purposes of these
components are:

• The iteration domain is used to encode the loop nests under which S is
nested.

• The set of array references RS encodes all the array and scalar references
within the statement.

• The predicate function pS encodes statements which have been if-conver-
ted [AKPW83], i.e., having its control dependences converted into data
dependences.

• Finally, the space-time mapping is a function that determines at which
processor and at which time a statement instance should be executed.
Initially, the space component of the function is a constant and the time
component is the identity function (which means the program will be
executed sequentially on one processor as in the input). As the mapping
process progresses, it will be refined as more parallelism is exposed.

4.1 Space-time mapping

The space-time mapping Θ contains the following restrictions: every odd di-
mension is a constant function. Θ can be further decomposed into three compo-
nents (α, β, γ), following the convention described in [Kel96, KPR98, KPR95,

5Global parameters are also referred to as system parameters or structural parameters in
the literature.

20

BCG+03a, BCG+03b]. In matrix form this is the following:

Θ(x, y) =

0 . . . 0 0 . . . β1

α1,1 . . . α1,d γ1,1 . . . γ1,gp+1

0 . . . 0 0 . . . β2

α2,1 . . . α2,d γ2,1 . . . γ2,gp+1

...
. . .

...
...

...
...

0 . . . 0 0 . . . βd

αd,1 . . . αd,d γd,1 . . . γd,gp+1

0 . . . 0 0 . . . βd+1

x1

...
xd

y1

...
ygp

1

The interpretation of α, β and γ are as follows. The α component describes
a linear transformation from Zd → Zd on x, i.e., on the loop indices. The β-
vector component represents d+1 constant functions, and can be interpreted as
the shape of an (imperfectly) nested loop nest. Finally, the γ component is an
affine transformation from Zgp → Zd, and these represent the amount of loop
shifting in the transformation. We call the odd dimensions of Θ β-dimensions
and the rest non-β dimensions.

Note that this representation contains redundant information; it is possible
to represent a similar transformation with only d dimensions. However, this
representation is more convenient for program transformations. For example,
fusing or fissioning a loop can be performed by modifying ony the β component
of a schedule. Similarly, loop shifting or alignment only modifies the γ compo-
nent, and traditional unimodular loop transformations (skewing, interchange,
and reversal) only affect the α component.

To represent parallelism and processor assignment, we extend the space/time
mapping representation with the following attributes:

parallelism kind vector Parallelism in the GDG is indicated by attaching
each non-β dimension of Θ with a parallelism kind indicator. Currently,
the kinds of parallelism used in our implementation are only “sequen-
tial,” and “doall.” It is possible, however, to represent pipeline paral-
lelism within the representation for future versions of the mapper that
will support it.

task group id To deal with the possibility of representing groups of tasks with
atomic computation phases, each statement S ∈ V is assigned a group id
gS : Z with the interpretation that all statements with the same group
id belong to the same abstract task. Task group ids are assigned by the
tiling phase in the mapper.

processor dimensions A processor placement algorithm may associate cer-
tain loop dimensions of a statement to correspond to the processors of the
target processor grid. A dimension range [proc begin, proc end) may be
attached to each statement to indicate such information.

Similar extra processor dimensions may be attached to the access functions
of individual arrays within the mapped program to indicate a distributed
array.

21

heterogeneous system id Heterogeneous systems may contain multiple pro-
cessor grids, each belonging to different system. To accomodate this we
also allow a grid id to be attached to each statement. This attribute indi-
cates which processor grid within a heterogeneous system a statement is
placed in mapped form.

4.2 Dependence edges

Each edge (S, T) = e ∈ E in the GDG represents the dependence between the
two statements S and T . Attached to each edge is a dependence Z-polyhedron
Re, which summarizes the dependences between operations of S and T , i.e.,

Re = {(i, j) | 〈S, i〉 depends on 〈T, j〉}

4.3 Example 1

The ideas in the previous section can be clarified with a concrete example.
Consider the following one statement loop nest:

for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++) {

a[i][j] = a[i][-1 + j] + a[j][i]; // S

}
}

This set of loop nests contains only one global parameter n. In this example,
we can assume the value of n is greater than or equal to 1. Thus the context
of the GDG C is the polyhedron {n | n ≥ 1}. The GDG G = (V, E, C) contains
only one node V = {S}, where S represents the statement of the same name
within the loop. The iteration space of S is DS(n) = {[i, j] ∈ Z2 | 1 ≤ i ≤
n, 1 ≤ j ≤ n}. By performing dependence analysis using the process outlined
in the previous section, we can determine that the loop has the following set of
dependencies.

Target Source Dependence Relation Type
a[i,j] a[j,i] {([i, j], [j, i]) | 1 ≤ j, i ≤ n,−j + i − 1 ≥ 0} true,anti
a[i,j] a[i,j-1] {([i, j + 1], [i, j]) | 1 ≤ j ≤ n − 1, 0 ≤ i ≤ n} true

The initial schedule for the statement within the loop is the “identity” func-
tion:

ΘS(i, j, n) =

0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

i
j
n
1

22

ΘS can decomposed into its α, and β and γ constituents:

αS =

[

1 0
0 1

]

βS = [0, 0, 0]T

γS =

[

0 0
0 0

]

4.4 Example 2

Below we consider another loop nests example with two statements.

for (int i = 1; i <= T; i++) {
for (int j = 2; j <= -1 + N; j++) {

for (int k = 2; k <= -1 + N; k++) {
L[j][k] = f(A[j][k+1], A[j][k-1], A[j+1][k], A[j-1][k]); // 1

}
}
for (int j = 2; j <= -1 + N; j++) {

for (int k = 2; k <= -1 + N; k++) {
A[j][k] = L[j][k]; // 2

}
}

}

The variables T and N are symbolic unknowns to the loops and are thus
represented as global parameters within the GDG. The iteration spaces of the
two statements are identical, and are given below.

D1 = {[i, j, k] | 1 ≤ i ≤ T, 2 ≤ j ≤ N − 1, 2 ≤ k ≤ N − 1}

D2 = {[i, j, k] | 1 ≤ i ≤ T, 2 ≤ j ≤ N − 1, 2 ≤ k ≤ N − 1}

Due to space limitations, we shall omit listing all the dependence relations.

23

The initial schedules for the two statements are:

Θ1(i, j, k, T, N) =

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

i
j
k
T
N
1

α1 =

1 0 0
0 1 0
0 0 1

β1 = [0, 0, 0, 0]T

γ1 =

0 0 0
0 0 0
0 0 0

Θ2(i, j, k, T, N) =

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

i
j
k
T
N
1

α2 =

1 0 0
0 1 0
0 0 1

β2 = [0, 1, 0, 0]T

γ2 =

0 0 0
0 0 0
0 0 0

Note that the two schedules are not identical. The third dimension of Θ1 is 0
while in Θ2 it is 1. This reflects the fact that the two statements are nested
under the first loop nest i but not under the second j loop nests.

One of the classic optimizations that we can do is performing loop fusion
to improve the spatial locality of the loop nests. In the above example, we can
do this by merging the two statements into a common set of loops. However,
due to a potential dependence violation, we have to “shift” the first statement
ahead by one i-iteration in order to preserve dependencies. The resulting loop
nests contains a prologue and an epilogue resulting from this transformation:

if (N >= 3)

for (int i = 1; i <= T; i++) {
for (int j = 2; j <= N + -1; j++) {

L[2][j] = f(A[2][j+1], A[2][j-1], A[3][j], A[1][j]);

for (int j = 2; j <= N + -2; j++) {

24

for (int k = 2; k <= N + -1; k++) {
L[1+j][k] = f(A[j+1][k+1], A[j+1][k-1], A[j+2][k], A[j][k]);

A[j][k] = L[j][k];

}
}

}
for (int j = 2; j <= N + -1; j++) {
A[N-1][j] = L[N-1][j];

}
}

While the loop nests in syntactic form requires somewhat non-trivial gen-
eration of prologue and epilogue, it is trivial to represent the result of this
transformation using the internal space-time mapping notation:

Θ1(i, j, k, T, N) =

0 0 0 0 0 0
1 0 0 0 0 −1
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

i
j
k
T
N
1

α1 =

1 0 0
0 1 0
0 0 1

β1 = [0, 0, 0, 0]T

γ1 =

0 0 −1
0 0 0
0 0 0

Θ2(i, j, k, T, N) =

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

i
j
k
T
N
1

α1 =

1 0 0
0 1 0
0 0 1

β1 = [0, 0, 0, 1]T

γ1 =

0 0 0
0 0 0
0 0 0

We can interpret these matrices as follows. The second dimension of Θ1 is
changed from i to i−1, while that of Θ2 remains at i. This reflects the fact that

25

we want to execute the statement 1 one i iteration ahead than before. We also
transform the third dimension of Θ2 from 1 to 0, which denotes the fact that
we want to fuse the two statements under loop nest j (and k). Finally, the last
dimension of Θ2 is changed from 0 to 1, which denotes the fact that statement
2 should be executed after statement 1 within the i, j, k loop nests.

4.5 Related Works

The notion of a generalized dependence graph is taken from various works of
Feautrier [Fea91, Fea92a, Fea92b]. The representation of a schedule as its α,
β and γ components is taken directly from the WrapIt system [BCG+03a],
although the use of extra constant scheduling dimensions (β) to encode the
loop nesting structure was first used extensively in the work Kelly et al. [Kel96,
KPR98, KPR95].

26

5 Polyhedral Mapper Infrastructure

JAMA [MN03]

Integer matrices

Sparse constraints

Polyhedral
library

Polylib [Tea02]

Jolylib Z-domain extensions

(I)LP solvers

lp solve [Ber07]

Piplib [Fea03]

Polyhedral
scanner

CLooG [Bas04b]

Bungle

++WWWWWWW

33gggggg

++WWWWWWWWWWWWW

//

33ggggggggg

33ggggggg

++WWWWWWWWW

33ggggggggg

++WWWWWWWWWWWWW

Figure 2: Polyhedral mapper software infrastructure.

The R-Stream mapper requires only a few software libraries and tools devel-
oped externally outside of Reservoir Labs. A number of libraries are available in
the field of high level optimization. However, most of them did not meet our ex-
pectations in terms of robustness, scalability or software engineering. Hence, we
have developed our own versions of these libraries, which use better or equivalent
algorithms and are more robust. We wrote them in Java for homogeneousness
of our software architecture and productivity.

Figure 2 shows how we organize these libraries and tools within the mapper.
External libraries written in C and C++ are interfaced with Java via the Java
Native Interface (JNI), and then encapsulated as Java classes within the R-

Stream mapper environment.

27

Some of the libraries shown are released under the GPL. We have the option
to use them internally for development purposes. For production and distribu-
tion, we use proprietary libraries that have greater performance, higher stability,
and specific feature sets needed by the polyhedral mapper.

The libraries and tools can be categorized as follows:

Matrix library The R-Stream mapper makes heavy use of matrices and con-
straints encoded as matrices. We start with JAMA, a public domain matrix
library distributed by MathWorks and National Institute of Standards and
Technology (NIST). Since this core library only contains double floating
point matrices and related algorithms, we have substantially extended the
library to include integer matrices and operations on integer matrices.6

Polyhedral library Many operations in the R-Stream mapper are manipu-
lated as polyhedral sets.

• We started with Polylib [Wil93, Tea02], a polyhedral library pro-
viding convenient operations on polyhedral sets such as union, differ-
ence, intersection and projections. The GNU multiprecision numeric
library (GMP) is used internally in Polylib for manipulating big in-
tegers.

• While Polylib has proven to be very useful, the fact that it is written
in C has proven to be an obstacle in developing extensions. We have
redesigned Polylib adding critical performance optimizations and
provide our own efficient standalone library in Java called Jolylib.
Recently, we added a Jolylib extension to Z-domains using the al-
gorithms in [Pug92, SL06, SLM07, GR07]. Z-domain extensions are
based on previous seminal contributions [QRR96, NR00].

Integer linear programming solvers The R-Stream mapper makes use of
linear programming and integer linear programming in scheduling, local
memory compaction, array compaction, and dataflow analysis. For these
tasks, the following tools are used:

• Lpsolve, an open source linear programming and integer linear pro-
graming solver.

• Piplib [Fea88b, Fea03], a parametric integer linear programming
tool developed by Feautrier et al. Because Piplib calls are very
expensive, and due to GPL constraints, we only link it in and use
it in for experimentation. We are considering replacing this with a
Java version, with more modern algorithms.

• We are considering moving to using CPLEX, a commercial mixed
integer linear programming (MILP) tool.

6These include computation of Hermite Normal Form and Smith Normal Form, lattice and
subspace operations, and lattice basis reduction algorithms.

28

Genetic Programming The tiling component (Section 8) of the R-Stream

mapper uses genetic programming to select the optimal tile sizes. We are
currently using the JGap framework [dt07] for this purpose.

Polyhedral scanner Polyhedral scanning is the process of synthesizing loop
nests from the internal polyhedral representation (Section 15). Two tools
are used:

• CLooG [Bas04b], a polyhedral scanner developed by Cedric Bastoul
based on the Quilleré separation algorithm [QRW00],

• Bungle7, our implementation of the Quilleré algorithm with criti-
cal emphasis put on code quality improvements and code generation
speed.

7Bungle is a pun on the pronounciation of CLoog as “kludge.”

29

6 Array Expansion

Array expansion is the process of elimination of false dependences (i.e., output-
and anti-dependences) by expanding the size and/or dimensions of arrays so
that conflicting writes in different loop iterations are given distinct array loca-
tions. Such transformations are also a precursor to parallelization enhancements
such as array privatization [GLL95, Tu95, MAL93, TP01], where arrays holding
temporary values are replicated on each processor.

Array expansion is desirable, because programs written for a single-thread
environment are often not directly suitable for parallelization. For example,
consider the following manually “optimized” matrix multiply loop kernel, where
the programmer uses a single scalar variable s to hold the running value of the
dot product:

for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
s = 0;

for (k = 0; k < N; k++) {
s += A[i][k] * B[k][j];

}
C[i][j] = s;

}
}

The intention, of course, is that the scalar variable can be mapped directly
into a machine register, reducing the number of memory accesses. However, if
parallelization is the goal, the single scalar s becomes a dependence bottleneck,
since all iterations of the loop nests have to read and write to s.

One possible transformation that can eliminate the false dependences on s is
scalar expansion, a degenerate case of array expansion restricted to scalars. For
example, by expanding the scalar s into two dimensional array, we can obtain
the following loop nests:

for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
s[i][j] = 0;

for (k = 0; k < N; k++) {
s[i][j] += A[i][k] * B[k][j];

}
C[i][j] = s[i][j];

}
}

In the above loop nests, all iterations of loops i and j can be executed in parallel
because each (i, j)-iteration read and writes to different locations of s. The array

30

s above can actually be replaced completely by C. This can be accomplished by
array copy propagation, a secondary transformation, after array expansion.

Scalar expansion can be generalized to arrays. The following example, taken
from [Fea88a], demonstrates this transformation. We are given a sequence of
loop nests operating on an array c.

for (k = 0; k <= m+n; k++) {
c[k] = 0;

for (i = 0; i <= m; i++) {
for (j = 0; j <= n; j++) {
c[i+j] = c[i+j] + a[i] * b[j];

}
}

The false dependences on c can be removed by replacing c in the second
loop nest with the 2-dimensional array cc. The remaining loop nests contain
only true dependences.

for (k = 0; k <= m+n; k++) {
c[k] = 0;

for (i = 0; i <= m; i++) {
for (j = 0; j <= n; j++) {
if (n-j-1 < 0 || i-1 < 0) {
cc[i,j] = c[i+j];

} else {
cc[i,j] = cc[i-1,j+1] + a[i] * b[j];

}
}

}

6.1 Related works

Feautrier [Fea88a] describes the first algorithm for array expansion in the poly-
hedral model using a variant of parametric integer programming [Fea88b]. Re-
cent improvements to the Feautrier algorithm includes [BCC98]. One of the
crucial problems to array expansion is the array data dependence analysis prob-
lem [Fea91, MAL93, CBF95]. Closely related to the problem of array expansion
is array privatization, which are described in various works in the literature,
e.g., [GLL95, Tu95, MAL93, TP01].

6.2 Current algorithm

Currently, we implement an interim version of array expansion, expanding only a
subset of the potential values. This is due to project considerations; it allowed us
to build a version of array expansion prior to our engineering of array dataflow

31

analysis [Fea91, MAL93, CBF95]. Our interim array expansion is described
below; with the recent robust support for Z-Domains, we will be able to build
the needed array dataflow analysis.

An expandable temporary is a variable whose value is assigned in the same
iteration as its use. This is a very natural by-product of sequential programs.
Unfortunately, it systematically creates false dependences between iterations.

This is defined by the following conditions.

1. All references to the expanded temporary must be nested under L common
loop nests. This means that the β-strings of all references have a common
prefix of at least length L.

2. All locations read by a reference r must be written by some other references
before r is executed within the current iteration.

To be more precise, let y denote the set of system parameters. Let the read
references be (f1, D1), . . . , (fn, Dn). Let the write references be (g1, D

′
1), . . . , (gm, D′

m).
Given an iteration vector i, let iL denote the length L prefix of i. Let (S, i) ≺
(T, j) denote the fact that iteration i of statement S precedes iteration j of T .

Suppose we have one write reference (g, D′
w) (in statement S) and one read

reference (f, Dr) (in statement T). Then consider

R = {(a, b, i, j)|a = f(i, y), b = g(j, y), i ∈ D′
w(y), j ∈ Dr(y), (S, i) ≺ (T, j), iL = jL}

(12)
This set represents the set of all locations written by the statement S before
being read by the statement T within loop nesting depth L.

To enforce the fact that all locations read in the iteration must be written
in the same iteration before it is read, we check if the following condition holds:

{(a, a, i)|a = f(i, y), i ∈ Dr(y)} − {(a, b, i)|∃j.(a, b, i, j) ∈ R} = ∅ (13)

If so, the array is a temporary and consequently it can be expanded.

6.2.1 Example

The following program fragment demonstrates the working of our algorithm.

for (int i = 0; i < 100; i++) {
t[0] = 0;

u[0] = 0; // S0

for (int j = 1; j < 99; j++) {
t[j] = t[j] * 2; // S1

u[j] = u[j-1] * 2; // S2

}
for (int j = 1; j < 99; j++) {
A[i][j] = t[j];

B[i][j] = u[j]; // S3

}
}

32

Variable t cannot be array expanded because within statement S1, the values
in t[1], . . . , t[98] are loop-carried. On the other hand, variable u can be
expanded. In S2, all values read in u[j-1] are defined in either S0 or S2.
Similarly, all values read in S3 are defined by either S0 or S2 and are thus not
loop-carried.

The array expanded code is the following:

for (int i = 0; i <= 99; i++) {
t[0] = 0;

u[i][0] = 0;

for (int j = 1; j <= 98; j++) {
t[j] = 2 * t[j];

u[i][j] = 2 * u[i][-1 + j];

}
for (int j = 1; j <= 98; j++) {
A[i][j] = t[j];

B[i][j] = u[i][j];

}
}

33

7 Affine Scheduling

Affine scheduling is the main technique of extracting resource unbounded par-
allelism in the R-Stream mapper. The general problem statement is as follows:
given a generalized dependence graph G = (V, E, C), compute a set of (para-
metric) multidimensional schedules:

Θx : Zd(x)+gp → Z2d(x)+1

for all statements x ∈ V , where d(x) denotes the number of loop dimensions in
the statement x.

Because of its generality, affine scheduling subsumes many aspects of tradi-
tional transformations in a classical compiler, including interchange, reversal,
skewing, scaling, fusion and distribution.

We can classify the many variants of affine scheduling in the literature by
the following set of criteria:

• Is there any restriction on the form of schedules?

• Does the algorithm compute parametric or non-parametric schedules?

• What sort of parallelism does it extract, i.e., coarse-grained or fine-grained,
or a combination of both?

• What computation techniques are used to find the schedules?

7.1 General template of affine scheduling algorithms

All of the affine scheduling algorithms that we are examining have a similar
algorithmic structure.

The general template of the algorithm is as follows:

1. Given a dependence graph G, decompose G into a set of strongly connected
components (SCC) G′

1, G
′
2, G

′
3, . . . , G

′
n. Process each SCC independently.

2. For each SCC, G′
i ⊆ G, find a one-dimensional affine schedule θ such that

the maximal number of edges in G′
i can be dismissed. An edge e ∈ G can

be dismissed iff θ

θdst(e)(i, y) − θsrc(e)(j, y) ≥ 1, ∀(i, j) ∈ Re(y) (14)

Note that once θ satisfies the above condition for an edge e, subsequent
dimensions of the schedule – no matter what they are – are always legal
with respect to e.

3. Remove dismissed edges from each SCC G′
i, and recursively apply the

algorithm to compute other (lower) dimensions of the schedule.

Different scheduling algorithms deviate from each other by how θ is com-
puted in step (2) of the template.

34

7.2 Feautrier’s algorithm

Feautrier’s affine scheduling algorithm [Fea92a, Fea92b] uses the following to
solve step (2):

2. Find θ by solving the following optimization problem:

max
∑

e∈V (G′

i
)

ze s.t.

θdst(e)(i, y) − θsrc(e)(j, y) − ze ≥ 0, ∀(i, j) ∈ Re(y), ∀e ∈ E(G′
i) (15)

0 ≤ ze ≤ 1

The intuitive meaning of the above optimization problem is to find a 1-D sched-
ule θ such that the maximal number of dependence edges can be dismissed.

Note that the optimization problem above involves an infinite family of linear
constraints. Using the affine form of the Farkas Lemma, we can transform the
above set of constraints into a linear program (with a finite number of linear
constraints).8

7.3 Darte and Vivien’s algorithm

Instead of dealing with arbitrary dependence relations, Darte and Vivien’s al-
gorithm [DV94, DV95, DRV00] first performs uniformization of the dependence
graph as a preprocessing step to simplify the dependence. Uniformization ap-
proximates dependence relations by transforming dependence relations into de-
pendence vectors. The process of uniformization may also introduce virtual
nodes in the dependence graph, which are not present in the original depen-
dence graph.

Uniformization works as follows. Given a dependence relation Re, we com-
pute its Minkowski decomposition in terms of lines l, rays r and vertices v:

Re = lin.space{l1, . . . , ln} + cone{r1, . . . , rm} + convex{v1, . . . , vk}

Let e = (u, v). We then create a new virtual node w. The uniformized depen-
dence graph contains the following new edges connecting u, v and w:

• An edge from u to w with dependence vector ~0.

• For each i = 1 . . . n, one edge from w to w with dependence vector li and
one edge with dependence vector −li.

• For each i = 1 . . .m, one edge from w to w with dependence vector ri.

• For each i = 1 . . . k, one edge from w to v with dependence vector vi.

See Figure 3 for an illustration of this uniformization step.
If m = 0 and n = 0, we also can omit the virtual node and create the

following subgraph instead:

8Also, because of complementary slackness, the optimal solutions to ze must be 0 and 1.
So integer linear programming is not needed.

35

u

v

u

w

v

Re =
lin.space{l1, . . . , ln}+
cone{r1, . . . , rm}+
convex{v1, . . . , vk}

��

0

��
l1,−l1, . . . , ln,−lnffr1, . . . , rm 88

v1

��

. . .

��

vk

��

Figure 3: Uniformization of a dependence edge.

• For each i = 1 . . . k, one edge from u to v with dependence vector vi.

After uniformization, step (2) in the algorithmic template is solved by com-
puting the maximal zero-weight multi-cycle of the uniformized dependence graph
via the Karp, Miller, Winograd (KMW) decomposition.9

Let W denote the weight matrix of the edges, and let C denote the con-
nection matrix of the dependence graph.10 Darte et al. have shown that the
following linear program can be used to solve the maximal zero-weight multi-
cycle problem:

min
∑

e∈E ze

Wq = 0, Cq = 0, q + z ≥ 1
z ≥ 0, q ≥ 0

(16)

Let C denote the maximal zero-weight multi-cycle subgraph. Then results
from (16) can be interpreted as follows:

• ze = 0, then e is in C,

• ze = 1, then e is not in C.

The dual LP of (16) can be used to compute the desired schedule θ. In Darte
and Vivien’s algorithm, the schedules θ order operations of a given statement
into wave-fronts. This means that the schedule for statement v, θv, is of the
form θv(i) = Xi + ρv, where X is a vector common to all the linear parts of the
schedule θ, and ρv is the offset specific to schedule θv.

Constraints on the dual LP can be computed using the results computed in
(16):

e ∈ C =⇒ Xw(e) + ρsrc(e) − ρdst(e) ≥ 0 (17)

e 6∈ C =⇒ Xw(e) + ρsrc(e) − ρdst(e) ≥ 1 (18)

Solving for X and ρ above gives us the desired schedule for (2) in the algo-
rithmic template.

9In a multi-cycle, an edge can be visited more than once.
10A connection matrix C is a boolean matrix such that Cij = 1 iff edge (i, j) is present.

36

7.4 Lim and Lam’s affine partitioning algorithm

Lim and Lam’s affine partitioning algorithm is similar in structure as Feautrier’s
algorithm, and can be thought of as a minor modification of the former to extract
coarse-grained and pipelined parallelism.

2a. Given G′, compute its feasible schedule polyhedron:

P = {θ | θdst(e)(i, y) − θsrc(e)(j, y) ≥ 0, ∀(i, j) ∈ Re(y), ∀e ∈ E(G′
i)}

Intuitively, P can be thought of as representing all feasible schedules which
satisfy the set of dependences.

2b. Decompose P into a combination of lines L, rays R and vertices V , i.e.,
P = lin.space(L) + cone(R) + convex(V). The lines represent the space
of doall parallelism, while the rays represent the space of pipelined paral-
lelism.

7.5 Summary

Algorithm Parallelism Restrictions Algo. techniques Scalability

Feautrier fine no Farkas Lemma, LP 100s of stm.
Darte fine wavefront Uniformization 100s of stm.

non-parametric KMW decomp., LP
Lim and Lam coarse no Farkas Lemma 10 stm.

Minkowski decomp.

Table 1: Summary of scheduling algorithms.

Table 1 summarizes all the major variants of algorithms we covered in pre-
vious sections and how they differ from each other. Both Feautrier and Darte
algorithm requires linear programming (LP) to compute step (2) in the algo-
rithm template. The difference is in how the LPs are formulated. Feautrier’s
algorithm uses the Farkas Lemma to reduce an infinite family of constraints in a
finite set of constraints. This process introduces extra Farkas multipliers for each
constraint in the dependence relations that must be subsequently eliminated.
While Darte’s algorithm does not require Farkas multipliers, the uniformization
step introduces an extra virtual node for each dependence edge in the graph.
Thus both algorithms tend to introduce many extra auxiliary variables. We
have found that there is not significant difference between the computation cost
of the two algorithms.

Lim and Lam’s algorithm is also very similar to Feautrier’s algorithm. But
instead of using LP, it uses Minkowski decomposition of polyhedra to generate

37

the entire solution space of feasible schedules. This gives the Lim and Lam algo-
rithm the ability to extract both coarse-grained doall parallelism and pipelined
parallelism, which neither the Feautrier and Darte algorithms can do. Unfortu-
nately, this comes at a high price in terms of scalability. We have found that
we can only scale the algorithm up to about 10 statements.

All three algorithms also suffer from the following problem: they are only
concerned with extracting parallelism, with little consideration with everything
else. However, two schedules with the same degree of parallelism may behave
very differently in practice, because of different locality and/or “quality” of
generated loops.

7.6 Our Algorithm

The affine scheduling algorithm implemented in our mapper is a combination of
various ideas presented in the previous sections.

2a. For each SCC G′
i ⊆ G, compute its feasible schedule polyhedron as in the

Lim and Lam algorithm:

P = {θ | θdst(e)(i, y) − θsrc(e)(j, y) ≥ 0, ∀, (i, j)Re(y), ∀e ∈ E(G′
i)}

We compute P by first applying the Farkas Lemma to each dependence
relation Re separately, eliminating the resulting Farkas multipliers, then
joining the separate results. That is, we first compute

Pe = {[θdst(e), θsrc(e)] | θdst(e)(i, y) − θsrc(e)(j, y) ≥ 0, ∀, (i, j)Re(y)}

then combining the separate Pe relations.

2b. Compute lin.space(P), which represents the set of doall parallelism. Sup-
pose P = {x | Ax + b ≥ 0}. This can be computed by simply solving for
Ax + b = 0.

2c. Find a one-dimensional affine schedule such that the maximal number of
edges in G′

i is as in step (2) in Feautrier’s algorithm.

The advantage of this algorithm is as follows:

• By computing Pe separately as preprocessing step, we can avoid the pro-
cess of eliminating many Farkas multipliers at the same time. Also, the
Pe sets may be reused in recursive invocation of the algorithm.

• Our algorithm can be used to extract coarse-grained parallelism just like
Lim and Lam’s.11

• Linear programming is much more scalable than Minkowski decomposi-
tion.

11But not pipelined parallelism.

38

7.6.1 Computing “wavy” schedules

Wavefront schedules are often more desirable because they can be easily ren-
dered in an efficient loop nest, or fit into the underlying execution model. For
example, wave-front schedules are often used in systolic arrays mappings.

We can easily modify the above algorithm to compute a wave-front schedule.
One possible modification is to use Darte’s KMW decomposition as a primitive
in step (2) of the algorithm.

Another possible alteration — which is actually easier to implement — is to
restrict the schedule θ to only wave-front schedules within the Farkas Lemma
approach. Let θv(i) = γi+ρv. Then we can compute a wave-front only schedule
using the following set of constraints:

max
∑

e∈V (G′

i
)

ze s.t.

γi + ρsrc(e) − γj − ρdst(e) − ze ≥ 0, ∀(i, j) ∈ Re(y), ∀e ∈ E(G′
i) (19)

0 ≤ ze ≤ 1

Another modification is to compute a wave-front schedule with the same
degree of parallelism if one exists, but compute a non-wave-front schedule oth-
erwise. We can accommplish this as follows. Let θv(i) = γvi + ρv. Then we
solve this LP:

max
∑

e∈V (G′

i
)

ze − N |γdst(e) − γsrc(e)|1 s.t.

θdst(e)(i, y) − θsrc(e)(j, y) − ze ≥ 0, ∀(i, j) ∈ Re(y), ∀e ∈ E(G′
i) (20)

0 ≤ ze ≤ 1

Here, N is a sufficiently large positive constant. If a wave-front schedule exists,
then the linear parts of the schedule θv for all v becomes identical, and the term
−N |γdst(e) − γsrc(e)|1 goes to zero.

7.7 Summary and Related Works

Traditional parallelizing compilers [AK02, Wol96] often rely on ad hoc loop
transformations techniques. Such techniques are pattern matching based, and
heavily dependent on the syntactic loop structure, and as such, the set of trans-
formations and the applicability of such transformations are severely restricted.
A typical phase-ordered setup is to apply unimodular transformations [WL91]
to perfectly nested loops, and to apply loop fusion to sequences of loop nests.

The main weaknesses of the traditional approach are these:

• The reliance on syntax and pattern matching means that many semanti-
cally equivalent loop nests cannot be transformed because they do not fit
the predefined patterns.

39

• The same reliance also means that each transformation is responsible for
code generation, i.e., updating the program representation, which can be
complex when performed as a syntactic transformation.

• The granularity is often coarser. For example, unimodular loop transfor-
mations applied to a perfectly nested loop often treat the entire body as
a single statement.

• Finally, by necessity the parallelization process has to be broken down into
many small transformation steps, and it can become very difficult to locate
a good final solution through a series of intermediate transformations,
especially if a “good” solution gauged by a combination of different and
potentially conflicting measures.

In contrast, general affine scheduling techniques which works entirely in the
polyhedral model suffers from none of these problems. The constraint-based
approach allows us to explore the entire possible space of legal schedules, and
delegate the task of solution searching to a constraint solver.

Nevertheless, there are some remaining weaknesses to our current approach
which requires additional improvements to the basic scheme. The most impor-
tant of these weaknesses are:

• Computationally, affine scheduling techniques are much more intensive
than traditional approaches, because (i) the use of dependence polyhe-
dra instead of less accurate approximations, (ii) the finer granularity of
scheduling, (iii) the need to consider the dependencies of the entire pro-
gram, and (iv) the use of linear programming and/or integer linear pro-
gramming.

• Our current algorithms can only explore the space of one dimension of
schedules at a time.

• Our current algorithms do not incorporate the proper set of cost metrics
and can thus result in suboptimal schedules. For example, they do not
directly optimize for temporal or spatial locality, or try to reduce commu-
nication.

All these issues have been addressed recently in the work of Vasilache [Vas07]
on simplifying dependence relations and unified formulation of multi-dimensional
schedules, and the work by Bondhugula [BBK+07] on scheduling with commu-
nication minimizing cost-metrics. We intend to continue improve R-Stream’s
schedulers by incorporating ideas from this research.

40

8 Forming Kernels: Grouping and Tiling

In the past decades, micro-processor makers have worked around the increasing
disparity between processing speed and memory bandwidth in several ways:

• By introducing intermediary levels of memory between the processor and
the main memory. These additional levels are faster (and even more so as
they are located on-chip) but smaller than the main memory. In shared
memory machines, these are typically cache memories and scratch pads.
In distributed memory machines, they are just local memories. Loading
a memory element is costly, so once a memory element is loaded into a
higher level of memory, it should be accessed as much as possible before
it has to be replaced (which is bound to happen as the capacity of these
memory is limited) to minimize the number of times it will have to be
reloaded. The number of times a data is used once loaded into a higher
level characterizes its temporal locality.

• Coarsening the grain of communication among these levels of memory is
another way of dealing with the disparity between processing speed and
memory bandwidth. With cache hierarchies, it is obtained by using cache
lines, i.e., fixed amounts of contiguous elements of memory that move
from one cache level to another at once. The use of cache lines virtually
multiplies the memory bandwidth by c, the number of words that fit in
a cache line. But, it only does so if the c words present in the cache
line are all accessed by the processor before the cache line is replaced by
another cache line. Once a cache line is loaded to the next level of cache,
the more elements are accessed before the line is replaced, the better the
performance. Spatial locality defines how well elements of a cache line are
used before the cache line is replaced. Spatial locality applies to many
different examples than cache, as in systems with virtual memory and a
translation look-aside buffer (TLB), which stores virtual-physical memory
page mappings in a table in a fast memory. Replacing an entry of such a
table typically has a latency of hundreds of processor cycles. In distributed
memory systems, direct memory access (DMA) engines also transfer blocks
of contiguous memory at once. The size of the blocks is usually variable
and some of the engines allow for one-time transfers of elements that are
distant from each other by a constant number of words (these transfers are
called strided, and the stride is the constant distance, usually counted in
bytes). As the size of transfers is variable, an additional way of reducing
the number of transfers is to transfer data through few big transfers rather
than many small transfers.

Moreover, in parallel computers, communication is faster among processing
elements than from a lower level of memory. Also in some architectures, it is
faster, from a given processing element, to communicate data to a subset of
processors (called the PE’s neighbors) of the grid, which are physically closer or
better connected.

41

With distributed memory systems, communications have to be explicit. Be-
fore a computation is performed, any input data that is not yet present on the
processing element has to be received explicitly, and any output data needed by
another processing element has to be sent explicitly. In order to make big (and
few) transfers, it is necessary to consider big set of computations, for which big
input and output data sets are derived.

This is realized in R-Stream by creating bigger computational entities, which
we call tasks. The R-Stream polyhedral mapper manipulates statements, as-
sociated with their iteration domain. From this representation, in which the
elementary computational entity is one iteration of one statement, there are
two ways of forming bigger entity:

• by grouping statements, i.e., putting several statements into the same
task and

• by putting several iterations of these statements into the same task, which
is performed using a loop transformation called iteration tiling. The
definition of tiling is overloaded in the literature, as it sometimes also
means explicitly defining data sets that must be processed within a task
(this is called data tiling). Since data footprints are often non-convex even
for convex iteration domains, and since some data may be used by several
different iterations, we chose to perform iteration tiling. Throughout this
document, tiling refers to iteration tiling unless stated otherwise. In the
literature, tiling is also sometimes referred to as blocking.

From loops scanning iterations of statements, we want to build loops scan-
ning tasks. In the following example, a and b represent statements.

for i=0,n {
for j=0,n {
for p=0,7 {

receive_input_data(i,j,p);

kernel(i,j,p);

send_output_data(i,j,p);

}
}

}

kernel(int i, int j, int p) {
for it = 0,64 {
for jt = 0, 128 {

a(i,j,p);

b(i,j,p);

}
}

}

42

Tasks are instances of a computational entity for different values of loop variables
i and j. Loops i and j, scanning across tasks, are called inter-task, while loops
it and jt, scanning iterations within a task, are called intra-task loops.

A kernel is defined by the piece of code whose instances are tasks. Kernels
formed by the polyhedral mapper are a function of the inter-task loops.

For parallel target architectures, the mapper also distributes these tasks
across the grid of processing elements, as described in Section 9.

In the current example, this is rendered by the p loop that would enumerate
processors numbered from 0 to 7.

If possible, tasks should have the following properties:

• their data footprint, i.e., the set of data that they access, should be
bounded.

In the case of distributed memory machines, this is necessary as the
amount of local memory is bounded. Overflowing local memories result
in runtime hardware exceptions, if not detected earlier by R-Stream or the
low-level compiler.

With shared memory machines, bounding the data footprint of tasks
avoids capacity misses, i.e., cache (resp. TLB) misses that are due to the
set of live data not fitting in the cache (resp. in the number of memory
pages referenced by the TLB).

We will see later on in this section that it is always possible to bound the
footprint of a task, by bounding the number of iterations that it contains;

• the ratio between their computation time and their communication time
should be greater than or equal to one. This way, communication latency
can be hidden by pipelining communications with computations, by using
multi-buffering (see Section 11). If the ratio is less than one, only part of
the communication latency can be hidden.

It is not always possible to obtain a ratio of one. The general possibility
to obtain such a ratio depends on the algorithm (algorithms for which it
is possible are called “compute-bound”, as opposed to “memory-bound”),
on the communication engine (bus, DMA, Ethernet cards, etc.) and on
the instruction-per-count realized on the processing elements.

This section presents the problem of forming kernels, whose execution-time
instances are tasks, out of loop nests. It is decomposed into the sub-problems
of grouping and tiling, which we describe here and show how they are solved in
the R-Stream polyhedral mapper.

Section 8.1 shows how grouping is performed. Section 8.2 presents the perfor-
mance constraints that have to be respected for the kernel formation component
to avoid negative interference with other components of the mapper. Section 8.3
shows how the tiling problem is formulated and solved. We discuss how other
components of the mapper interact with the tiling/grouping component in Sec-
tion 8.4, and propose future improvements in Section 8.5.

43

8.1 Grouping

The input of the grouping phase is the immediate output from the affine schedul-
ing component. The original program has been restructured into a set of loop
nests with explicit parallelism and with an improved degree of temporal locality,
i.e., loop dimensions with parallelism are marked with doall, and adjacent loop
nests that reference the same data are fused.

The goal of the grouping algorithm is to partition the set of statements of
the GDG. The set of statements forming each element of the partition is tiled
later on to form a kernel, for which operations for communicating input and
output data will be generated, as well as the subsequent synchronizations.

On target machines that have a host processor in addition to a grid of PEs,
the question of choosing which side (host or PE grid) should execute a kernel
arises. Some of the kernels may have much parallelism and a computation-to-
communication ratio greater than one, in which case they should be mapped
onto the PE grid. This is true unless they are so small that thread startup costs
become comparable with execution costs or the absolute communication granu-
larity becomes too fine to leverage spatial locality. Also, SIMDization has a sig-
nificant impact on performance of compute-bound kernels, and multi-buffering
also consumes a finite amount of parallelism (as presented in Section 11). Hence,
it is important that the kernel has enough parallelism to account for SIMDiza-
tion and multi-buffering, in addition to parallelization across the PE grid. When
statements (and their iterations) that access the same data are part of the same
kernel, this data can stay at a memory level that is close to the processor. In
other words, there is a potential performance gain in putting fused statements
into the same kernel.

The grouping component is then responsible for putting together statements
and form kernels that have all the necessary properties for their mapping on
the PE grid to yield better execution time than a sequential mapping on the
host processor. For the sake of conciseness, such groups of statements are called
profitable, as mapping them to the PE grid reduces their execution time. Instead
of being a binary attribute, we define the profitablility of a kernel as a value
that reflects the chances of the kernel to be profitable.

Unfortunately, profitability is not simply an increasing function of the num-
ber of statements in a kernel. Adding a statement to a kernel can make it more
profitable if it shares data with the other statements of the kernel, because it
increases data locality. On the other hand, if this statement does not have as
much parallelism as the other statements in the kernel, and if adding this state-
ment to the kernel would turn the execution of a loop to be sequential while it
would otherwise be parallel, the profitability of the resulting kernel is likely to
be lower than for the initial kernel.

A grouping that includes statements with too many sequential dimensions
into a single kernel looses parallelism. On the other hand, a grouping which sep-
arates two statements that access the same data may destroy temporal locality
discovered in previous phases. Thus to obtain a good grouping, two conflicting
objectives must be balanced.

44

Our grouping algorithm is based on a profitability score assigned to one or
several statements, which depends upon their number of iterations and elemen-
tary operations, upon the number of parallel loop dimensions and upon the ratio
between the number of iterations and the number of accessed data.

Currently, the grouping algorithm uses the following heuristics to accomplish
its task. It works in a bottom-up manner, from the innermost loops to the
outermost.

1. collect the statements of the innermost loops and compute their profitabil-
ity as if they were kernels.

2. Among the statements that do not belong to any kernels yet, add the
statements of most profitable innermost loop to the current kernel to be
formed.

3. Consider adding adjacent statements, i.e., statements that will be executed
just before (in this case they are called “previous” statements) or just after
(called “further” statements) to the current kernel. Adjacent statements
are added to the current kernel if they meet some or all of the following
criteria:

• The data set written by the previous statement (resp. read by the
further statement) is included in the footprint of the statements al-
ready in the kernel. This ensures that adding the statement does not
entail extra communication or synchronization within the kernel.

• Including the adjacent statements does not destroy any parallelism
in the current kernel. This can be checked directly as the paral-
lel/sequential nature of the loop dimensions of a statement are an
explicit attribute of the statements.

• if the next adjacent statement is part of a different loop than the last
statement visited, two cases arise:

– the number of iterations in the loop and its inner loops is bounded
by a small constant. In this case, we can heuristically decide that
the whole loop will not be tiled and we can add it to the kernel.

– in the other case, the loop is considered tilable. If it is tiled, they
cannot be fused as each tile (in other words each task) has their
own memory space12

4. When running out of adjacent statements, go back to 2.

At the end of grouping, a kernel number (sometimes called a mapping group
number in the code) is assigned to each statement of the GDG.

The iteration domains of the statements, now organized in groups, are then
tiled. Next sections give some background on iteration tiling, discuss what we
mean by tiling and which objectives and constraints we are taking into account
for the tiling component.

12However, some communications between tasks may be avoided further by the communi-
cation generation/optimization component.

45

8.2 Tiling

8.2.1 Orthogonal tiling

Early literature on tiling addresses a few related problems: (i) to enable tiling [IT88a],
(ii) to discover parallelism (e.g. [Fea92b, LL97]), (iii) to improve locality (e.g. [SL99]),
and (iv) to reduce communications in tiled loops [BDRR94]. One main disad-
vantage of these techniques is that they do not preserve desirable properties
such as temporal locality or parallelism, since they destroy existing schedules.
In short, they are not composable with scheduling techniques. Recently, tiling
techniques have appeared in the literature which attempt to find or preserve
such desirable properties in one single phase [AMP00a, Gri00, BBK+07].

If we step back and reexamine the tiling problem, we discover a useful simpli-
fication. Tiling is usually decomposed into two sub-problems: finding a shape to
the tile, i.e., determining how much the original iteration space is to be skewed,
and finding the size of the tile. As depicted in [GFL04], the shape problem is
actually a scheduling problem in disguise, hence in principle it is already taken
care of by our scheduling algorithm in the mapper. Only the space dimensions
can be modified without modifying locality and parallelism properties, as they
do not represent time. Modifying the space dimensions modifies the binding be-
tween processor coordinates and time. Hence, this degree of freedom is naturally
left for the placement component.

As a result, the shape of the tiles that we should look for is necessarily a
hyper-rectangle, and the relevant tiling problem is called orthogonal tiling. As
discussed in Section 8.3, this can be formulated as a search in which each loop of
the considered loop nests is associated with at most one variable that represents
its tile size.

Another nice example of complementarity between scheduling and orthogo-
nal tiling is shown in [XHG05] where aggressive fusion is performed and then
any dependence violation is corrected by orthogonal tiling.

8.2.2 Constraints derived from the target architecture

The tiling component of R-Stream can consider or ignore each of the following
constraints.

• The data footprint of a task must be smaller than the amount of
local memory. As explained in the introduction of the current section,
this is necessary for correction on distributed memory systems and for
performance on shared memory systems.

• Tile sizes should not entail load imbalance. Tiling reorganizes iter-
ations so as to produce inter-task and intra-task loops. A PE coordinate
is then assigned to each task by the placement component (see Section 9).
In order to utilize the whole PE grid, tiling must produce at least as many
tasks as there are PE in the grid. Our tiling component assigns a tile size
to each loop of a statement. A loop of round-trip r that gets assigned a
tile size of t is turned into an inter-tile loop of round-trip (⌊r/t⌋) and an

46

intra-tile loop of round-trip t. Iterations of inter-task loops are distributed
along dimensions of the PE grid. To avoid loop imbalance, a loop meant
to be distributed along a dimension of the processor grid of size s should
have an inter-task loop trip count of at least s. In other words, the relation
s.t ≥ r is enforced with loops that will be used for placement.

• Tile sizes are a multiple of the SIMD width. SIMDization is per-
formed downstream in the compilation process, usually by the low-level
compiler. In the SIMDization process, w operations of a loop are turned
into a w-wide SIMD operation, where w is the SIMD width. To facilitate
this process, intra-task loops are given trip counts that are multiples of
w. w is provided by the machine model. As a consequence, the number
of valid tile sizes is reduced by a factor of w.

• Tile sizes are a power of 2. The number of valid tile sizes can also be
exponentially reduced by considering exclusively tile sizes that are powers
of two. As SIMD widths are powers of two in general, this constraint is
compatible with the previous one.

As the tiling component is based on a search in the space of tile sizes, reducing
the number of valid tile sizes has a direct impact on the scalability of the tiling
compoonent.

8.3 Formulation of the tiling problem

8.3.1 Hoisting permutable loops

Many prior approaches to tiling are either restricted to perfectly nested loops
[BDRR94, IT88b], or emulated in a perfectly-nested-loop situation via em-
beddings [AMP00b, LLL01]. Embeddings turn imperfectly-nested loops into
perfectly-nested loops that scan a superset of the original iterations. Extra it-
erations which do not belong to the original loop nests are filtered by guards.
The resulting perfectly-nested embedding is then tiled uniformly.

This need for perfectly-nested loops is driven by the concept of permutabil-
ity. We can rephrase tiling transformation as permutability transformations as
follows:

• Reschedule (all) the loops into permutable loops, i.e., which can be inter-
changed without violating the dependences;

• Strip-mine all the loops, giving two kinds of loops (the inter-tile and intra-
tile loops);

• The inter- and intra-tile loops resulting from one given loop have the
same scanning directions as the original loop. Hence, they inherit their
permutability with the other loops. All the different intra-and inter-tile
loops can hence be permuted with each other. In particular, all the inter-
tile loops are permutable with all the intra-tile loops. The inter-tile loops

47

are hoisted to the outermost loop levels and the innermost loop levels kept
inside.

Unfortunately, tiling modeled on permutability becomes significantly less
intuitive as soon as imperfectly nested loops are considered, as the following
example demonstrates:

for (i=1; i <= n; i++) {
a;

for (j=1; j <= m; j++)

b;

for (j=1; j <= p; j++)

c;

}

If we apply permutability to the above loop nests, the following questions arise;
What does permuting loops i and j imply/mean? If hoisting the inter-tile loop
i is trivial, what happens to the corresponding intra-tile loop? Should the inter-
tile loop j be hoisted above statement a?

One of the several ways of embedding this loop nest would give:

for (i=1; i <= n; i++) {
for (j = 1; j <= m+p; j++) {

if (j==1) a;

if (1 <= j && j <= m) b;

if (m+1 <= j && j <= m+p) c;

}
}

The most obvious drawbacks of this transformation are these:

• Loss of explicit parallelism. If one of the j loops is sequential, or if there
is a dependence between statement a(i) and b(i) or c(i), embedded
loop j cannot be explicitly parallel. An important part of the work of the
scheduling component is then destroyed.

• Over-approximation of the footprints. A unique tile size is chosen for the
j loop. Hence, b and c will have the same number of iterations in a tile.
Assume that the data footprint per iteration of c is significantly larger
that the one of b. As the data footprint of each tile instance has to be
smaller than the size of the local memory, the tile size is limited by the
data footprint of c, even though b benefits from a significantly larger tile
size. b could then be too fine-grained, affecting performance.

• The problem of finding a compact embedding, i.e., without empty itera-
tions, is not trivial in general. The iteration domains may have different
shapes that may imply splitting the iteration domain of the statements to
be embedded, increasing the number of guarded statements.

48

• It reintroduces predicates. The raising phase integrates affine predicates
into the statement’s iteration domains, leaving us with the most pre-
cise polyhedral information possible. Predicating statements with affine
guards either forces us to modify their representation to include guards
or forces us to use predication and make sub-optimal mapping decisions
and have a sub-optimal resulting code (as polyhedral scanning may not be
able to use them explicitly, unless they are reintegrated into the domain
in between).

Note that Ahmed’s embedding technique [AMP00b] is technically different
from the simple code sinking presented here. It is the result of a scheduling
technique where the iteration spaces of all the statements are put in a com-
mon space (the Euclidean product of the iteration spaces), and then they are
more or less projected into a smaller-dimensional space and tiled. However, the
fundamental idea is the same, with apparently the same consequences.

We believe the problem here comes from the way the tiling transformation is
conceived, i.e., its reliance on permutability. A more convenient way of looking
at tiling is presented in next section.

8.3.2 Loop sinking instead of hoisting

The approach we are using is a descendant of Feautrier-style scheduling tech-
nique [Fea92a, Fea92b], with the constraint that it cannot modify the linear
properties (locality, explicit parallelism, fusion) obtained by the scheduling com-
ponent. We define a statement-wise tiling as a non-linear relation that can be
computed dimension by dimension. Restricting Xue’s tiling definition [Xue97]
to the orthogonal case, we define an orthogonal tiling by the diagonal matrix

T =

t1 . . . 0 0
0 t2 . . . 0

0
...

. . . 0
0 0 . . . tn

such that each tile is a hyper-rectangle whose size is given by the diagonal
elements of T and whose starting iteration IT (also called its origin) is such
that IT mod T = 0. This is illustrated with the blue rectangles at the left of
Figure 4 and can be written:

I = T ⌊T−1I⌋ + I mod T (21)

Unlike Xue [Xue97], who compresses the whole iteration space, we want to
be (at least in theory) able to tile different statements differently. So we do
not compress the statements’ iteration space, which allows us to keep them
our iterations in a common space. Instead, we see tiling as collapsing all the
iterations of R onto the iteration IT (R), as shown at the right part of Figure 4.

49

iterations of s2

t2 = 2

t1 = 4

iterations of s1

iterations of s2 broken dependence

not broken
t1 = 4

t2 = 2

iterations of s1

Figure 4: Tiling viewed as iteration collapsing.

Collapsing iterations means that the collection of collapsed iterations will
be executed at the same iteration as the origin of the tile. This iteration will
execute a loop nest that contains all the iterations belonging to the tile.

In terms of loop transformations, this can be described as a statement-wise
strip-mining (giving an outer and an inner loop) followed by a loop sinking. In
our method, this can be done for all the loop levels of a particular statement,
and all the inner loops are then sought below all the outer loops. Using the
example of the last subsection, the loops

for (i=1; i <= n; i++) {
a;

for (j=1; j <= m; j++)

b;

for (j=1; j <= p; j++)

c;

}

would become

for (i=1 ; i <= n/3; i++) {
for (it=1; it <= 3; it++)

a;

for (j=1; j <= m/4; j++)

for (it=1; it <= 3; it++)

for (jt=1; jt <= 4; jt++)

b;

for (j=1; j <= m/7; j++)

for (it=1; it <= 3; it++)

for (jt=1; jt <= 7; jt++)

c;

with tile sizes: a(3), b(3, 4) and c(3, 7). In this example the same sizes have
been chosen for the shared loop (i). We shall see why this is desirable in the
next section.

50

Now that we know what transformation we mean by tiling, let us see what
are the conditions in which this transformation can be done.

8.3.3 Tilability

In this section, we show how to derive the maximum possible tile size of loops
surrounding a given statement from the dependences that constrain it. The
range of possible tile sizes for a loop is called its tilability. As we consider that
a tilability of one is always feasible (which is true if the previous transforma-
tions did not violate any dependences as opposed to [XHG05]), we will most of
the time make this minimum of one implicit and use tilability to refer to the
maximum possible tile size.

Scheduling constraints holding on a pair (s1, s2) of statements at the k-th
loop level can be of either of these forms:

ik,2 − ik,1 ≥ δ, (ik,1, ik,2) ∈ D12,

(loop-carried dependence) or

ik,2 − ik,1 = 0, (ik,1, ik,2) ∈ D12

(dependence not carried at level k), where δ is either 1 or 0 and D12 is a
polyhedron describing a dependence between s1 and s2.

Let us treat these cases separately.
Inequalities

Tiling s1 with a tile size of t at the k-th level would respect the dependence
if and only if:

ik,2 − t⌊ik,1/t⌋ ≥ δ (22)

This integer floor operation is annoying as it is non-linear; however, we can
use bounds to return to a linear form:

i − t < t⌊i/t⌋ ≤ i (23)

Proposition 8.1. We can always tile a statement on which other statements
are dependent, but which does not depend on other statements.

Proof. According to (23), we have:

ik,2 − t⌊ik,1/t⌋ ≥ ik,2 − ik,1 + t

⇒ ik,2 − t⌊ik,1/t⌋ ≥ δ, (ik,1, ik,2) ∈ D12.

We can then always tile a statement on which other statements are dependent,
but which does not depend on other statements. The distance between two
dependent iterations may only increase by tiling s1.

When s1 is dependent on other statements, things are different. The depen-
dence is written:

ik,1 − ik,2 ≥ δ, (ik,1, ik,2) ∈ D21.

51

Here, tiling s1 respects the dependence if and only if:

t⌊ik,1/t⌋ − ik,2 ≥ δ (24)

Equation (23) gives the following equality:

t⌊ik,1/t⌋ − ik,2 > ik,1 − t − ik,2,

which is an integer relation that we can rewrite :

t⌊ik,1/t⌋ − ik,2 ≥ ik,1 − ik,2 − t + 1.

It is easy to see that

ik,1 − ik,2 ≥ t + δ − 1 ⇔ ik,1 − ik,2 − t + 1 ≥ δ ⇒ t⌊ik,1/t⌋ − ik,2 ≥ δ.

Then, tiling statement s1 respects dependence (24) if

ik,1 − ik,2 ≥ t + δ − 1, (ik,1, ik,2) ∈ D21 (25)

Note that the case t = 1, which means no tiling, works as it always respects
dependences.

In general, statement s1 will depend on several other statements, giving a
set of tilability constraints:

Ps1
(t1) =

⋂

k

ik,1 − ik ≥ t1 + δ1,k − 1, (26)

where t1 is s1’s tilability for the considered loop level.
Equalities

Dependences not carried at the k-th level are contained in the equation:

ik,2 − ik,1 = 0, (ik,1, ik,2) ∈ D12

Tiling statement s2 while preserving the dependence structure means that we
get:

t2⌊ik,2/t2⌋ − ik,1 = 0, t ≤ 1.

t = 1 is a trivial but least interesting solution. However, there are only two
ways this equation can be satisfied:

• when t2 = 1. This means that we don’t tile s1 at this level.

• when ik,1 and ik,2 are both multiples of t2.

Knowing that s1 has to be tiled too, we come to the conclusion that for both
their tile size to be greater than one, they must be a multiple of each other, i.e.,
they must be equal. When respecting this constraint, tilability is only limited
by the dependences carried at the considered level (the inequalities).

The maximal tilability for statement s at some level k is then given by the
minimum among the maximal tilabilities for all the statements that share the

52

same k-th level loop with s. The maximal tilabilities for individual statements
is given by equation (25):

tmax = max{t|t ∈ Ps(t)}

We know how to compute, for each statement of the GDG, its tilability,
and we know that the tilability of a k-deep loop is the minimum among its
statements’ tilabilities at depth k. We will see later that in general dependences
are not the only factor that limits a loop’s tilability. The way statements are
nested plays an important role in the formulation of the tiling problem. Next
section shows how to integrate the nesting information in a natural way.

8.3.4 Tiling as a search: beta tree

The recursive structure of imperfectly nested loops naturally lends itself to a tree
representation in which nodes represent loops and leaves represent statements.
Figure 5 shows a loop nest and its corresponding beta-tree (in black).

Dependence-based tilabilities are represented in blue. They are propagated
from the leaves (the statements, for which they were computed) to the other
nodes (toward the root). Each loop inherits a dependence-based tilability from
its descendants: the tilability range of a k-deep loop node is the intersection of
the ranges of its descendants at level k.

Besides, loops may have a maximum trip count, and it is useless to tile a
loop by a greater size than its maximum trip count. Hence, each loop has also
a trip-count tilability, which is an upper bound on its possible tile size. It is
represented in pink in Figure 5.

for (i=1; i <= 10; i++) {
a;

for (j=1; j <= N; j++) {
b;

c;

}
for (j=1; j <= i; j++) {
d;

for (k=1; k <= 5; k++)

e;

}
}

statement

a

b

c

d

e

[0]

[0 0]

[0 1 0]

[0 1]

[0 1 1]

[0 2 0]

[0 2]

root

[0 2 1]
[0 2 1 0]

loop node

t ≤ N
2 ≤ t ≤ 2

2 ≤ t ≤ 4

t ≤ 10

1 ≤ t ≤ 2

3 ≤ t ≤ 7
t ≤ 5

t ≤ 10

1

1

3

 ≤ T ≤

∞
4

7

(

1

1

)

≤ T ≤

(

3

2

)

(

2

1

)

≤ T ≤

(

5

∞

)

(

1

1

)

≤ T ≤

(

2

3

)

(

2
)

≤ T ≤
(

3
)

dependence based tilability
loop-bound based tilability

Figure 5: Tilability propagated on a β-tree.

53

By looking at the beta-tree, it is obvious now that the variables of our
problem are the tile sizes attributed to the loops, i.e., there is one variable
associated with each of the loop nodes of the beta-tree. Finding the optimal
tile sizes can be formulated as a search in the space of loop tile sizes, with the
following constraints:

• dependence-based tilabilities,

• loop trip-count based tilabilities

• and the constraints that come from the target machine, formulated in
Section 8.2.2.

Note that the variables whose tilability is limited to one do not need to be
considered as variables.

8.3.5 Consequences of our tiling paradigm

One of the well-known facts about tiling is that a parallel loop is always tilable.
As no dependences are carried by these loops, there are only equalities at this
level, which don’t pose additional constraints other than the one that is explicit
now due to the beta-tree: all shared loops are tiled by the same amount.

There is also an interesting relation between tiling viewed as a collapsing
problem and reductions. It is well-known that, even though the iterations that
compute an accumulation in a reduction are associative, a polyhedral depen-
dence analysis over-approximates these as linear dependences, rendering them
serial. This is because they cannot all be scheduled in parallel using affine
schedules. A non-linear schedule (parallel prefix) has to be applied for them to
become parallel. Similarly, this over-approximated (cyclic) dependence limits
tilability to one if no special consideration is taken.

Let us rephrase the collapsing problem (if n iterations can be collapsed along
dimension k, then the k-depth loop is tilable): Let a and b be two consecutive
iterations (at dimension k). If n iterations can be moved between a and b, then
the k-depth loop is tilable by n. As reductions make the iterations associative,
we can always move as many iterations as we want between a and b. Hence,
reduction dependences can (and should) be ignored when computing
tilability. This alleviates the inherent problem of the polyhedral representa-
tion w.r.t. reductions. However, it is understood that, as long as no parallel
prefix scheme is implemented, the reduction dimensions will stay sequential (but
tilable).

Tiling offers a way to group a fixed-size amount of iterations of a set of
statements into a tile, i.e., an atomic executional unit. On some of the target
machines, these kernels have to be mapped onto the processing elements. When
a statement has a tilability of one along all its dimensions (it is said to be not
tilable), this leads us to tiles of only one iteration. When these tiles are mapped
onto processing elements, it results in very fine-grained parallelism which entails
extremely bad performance on coarse- and middle- grained architectures like

54

Cell and TRIPS. Also note that because parallel loops are always tilable, an
untilable loop cannot be parallel, so to add harm to injury, these fine-grained
tiles would have to be mapped sequentially.

Fortunately, there is another way to group iterations, that is always available
even when the statement(s) is (are) not tilable: it is always possible to strip-
mine the innermost loop and consider the resulting inner loop as the tile. This
fixes the granularity part of the performance problem, although it does not make
the code parallel.

In the current implementation of tiling, it is possible to:

• compute tilability as described in the previous sections, or base it only on
the tilability made available by doall (parallel) loops and reductions. This
option is called “unbounded” tilability.

• strip-mine the innermost loop of the non-tilable statements. We could
actually extend this to any statement.

8.3.6 Implementation: generic search

We have implemented the search for an optimal tile size as a generic search with
a set of:

• variables, whose values are generated according to their direct constraints
(tilability, power of 2, multiple of SIMD width)

• constraints: each solution is evaluated against a set of constraints. In
general, a function is evaluated and tested for positivity. If negative,
it is not valid. The constraints are: footprint limit and communication
minimization.

• objectives: the search has to try to maximize a combination of them.
They are: data footprint maximization of a tile, maximization of the self-
reuse (reuse through a fixed non-invertible access function), minimization
of communications.

We are currently focusing on improving the quality of the constraint and objec-
tive functions. While they are not definite enough, it seems untimely to devise
a performance specialized search algorithm. Hence, we are using a genetic algo-
rithms search (with chromosome repair capabilities). It allows a simple trade-off
between quality of the solution and scalability, by adapting the size of the pop-
ulations and the number of generations in function of the size of the search
space.

8.4 Interaction with other mapper components

The results of the scheduler have a great impact on what the kernel formation
component (tiling/grouping) can do. The more the statements are fused, the
easier it is to form big kernels. It is also well-known that the tilability of loops
directly depends on the scheduler (which has to expose tilability).

55

Also, one objective and one constraint of the search are not as precise as they
could be if they knew which loops were to be chosen for carrying placement:

• the loop imbalance preventing mechanism assumes that any doall loop can
carry processor coordinates, which make it too conservative;

• the communication estimator is unable to make the difference between
communications coming from the host and from another PE.

8.5 Future improvements

We would like to combine tiling with placement, either by computing placement
before tiling, or by generating several good placement candidates to be included
in the tiling search. Also, when the objective and constraint estimators are
mature enough, we will work on efficient searches that use their mathematical
properties (monotonicity, being a polynomial/a posynomial [RR04], etc.).

56

9 Processor Placement

The role of the placement component of the R-Stream mapper is to assign tasks
to the processing elements (PE) that will execute them. For performance, the
assignment should be done in such a way that the amount of parallel work is
maximized and the amount of communication between processors is minimized.

Recall that, in our context, a task is a group of statements to be executed
atomically on a processor. Given a statement S in a d-level loop nest, assignment
means finding a processor assignment function

Π : Zd → P ,

where P denotes the processor space. R-Stream models the target machine
processors as a grid of processing elements embedded in a p-dimensional hyper-
rectangle. Formally, P = {x | 0 ≤ x < P}, where P is a p-vector denoting the
dimensions of the grid. For example, the TRIPS architecture can be modeled
as a 2 × 2 grid, while the CELL architecture can be modeled as a 1-D grid
with 8 processors. We identify a processing element (PE) by its p-dimensional
coordinate within the grid.

As a simplification of the problem, the R-Stream mapper currently uses the
computer owns rule, i.e., we assume that input data has to be in the processor’s
local memory at the time when the computation starts. Thus given a placement
function Π, data movements between processors can be automatically inferred.

To keep the problem tractable and efficiently implementable, we currently
restrict placement functions Π to modular mappings, which are functions of the
form:

Π(x) = Ux mod γ

where U is unimodular transform and γ is a d-dimensional vector of the form
(γ1, . . . , γp, 1, . . . , 1). Thus strictly speaking Π is a Zd → Zd mapping. However,
since (d− p) dimensions of Π are always zero, the image of Π is a p-dimensional
hyper-rectangle whose dimensions are those of the PE grid. In the terminol-
ogy used in HPF (High-Performance Fortran [hpf]), placement functions are
restricted to a form of multi-dimensional block cyclic distribution.

9.1 Algorithm

Now, consider the following identity:

x = U−1Γ.(⌊Γ−1.(Ux)⌋) + (Ux) mod γ, Γ ∈ Zd×d (27)

where Γ is the diagonal matrix whose diagonal elements are the elements of γ.
We can proceed to a mapping from the multi-dimensional iteration space to

space and time dimensions (as is done in e.g. [CF93]) by identifying time and
space in equation (27):

t(x) = ⌊Γ−1.(Ux)⌋s(x) = (Ux) mod γ

57

So we can write a general space-time mapping for a finite hyper-rectangular PE
grid as:

x = U−1Γ.t(x) + U−1.s(x), 0 ≤ s(x) < γ (28)

In our mapper, the placement phase is run after the scheduler, which is
responsible for finding parallel loops with minimal communication. As we want
such loops to carry placement, we are usually considering the case when U is
the identity, giving the following simpler change of variable:

x = Γ.t(x) + s(x), 0 ≤ s(x) < γ (29)

Equations (28) and (29) define an injective Zd → Z2d mapping: x 7→ (t, s).
However, as some of the s’s are always zero, we can eliminate them, producing an
actual Zd → Zd+p mapping. By doing this, we introduce p variables representing
the coordinates of an iteration on the processing element grid. Every iteration
is hence assigned a PE coordinate.

In the terminology of traditional loop transformation, we can describe the
transformation defined by equation (29) as a series of p strip-minings, where the
resulting inner loops are identified with processing element coordinates.

As an example, consider a target machine with a one-dimensional grid of 8
processing elements. The following loop

for (i=0; i < n; i++) {
a[i] = a[i+1]- 5;

}

can be strip-mined by eight using the relation i = 8i1 + i2, 0 ≤ i2 < 8, giving:

for (i1=0; i1 < n/8; i1++) {
for (i2=0; i2 < 8; i2++) {
a[8*i1+i2] = a[8*i1+i2+1]- 5;

}
}

9.2 Single-Program Multiple-Data (SPMD) code genera-
tion

We can place these computations on the one-dimensional processing element
grid by identifying i2 with the one-dimensional processing elements coordinates:
i2 = proc. Thus, processor with coordinate proc executes the following loop
nests:

for (i1=0; i1 < n/8; i1++) {
a[8*i1+proc] = a[8*i1+proc+1]- 5;

}

58

Note that proc is not a loop index but rather an extra runtime parameter
which stands for the current processor coordinate. Turning a loop variable into
a processing element coordinate is only legal if the strip-mined loop is parallel,
as it actually schedules them for the same value of the outer strip-mined loop
(i1 here). Turning the PE coordinates into parameters is done by the thread
generation component, which also generates the loops that scan the different
parallel threads.

Using the terminology of HPF, this way of doing corresponds to a cyclic
distribution. However, currently in R-Stream, placement is applied to tiled
statements, so indeed tasks are distributed across the processing elements. The
loops chosen for carrying placement are inter-tile loops. It is then a form of
multi-dimensional block cyclic distribution.

9.3 Minimizing communications

One of the roles of the scheduler is to make explicit parallel loops across which
communications are minimal. One would then think that we can obtain a
placement that minimizes communications by choosing the loop that carries
the fewest communications to carry placement. This is only true if one doesn’t
distinguish the different kinds of communications involved. In particular, in
our two-level machine model, communications can happen between processing
elements or between a processing element and the host (we always consider
the existence of host-side memory even when the target machine has no host
processor).

With certain interconnection networks between processing elements, the
proximity between two communicating processing elements directly impacts per-
formance. Typically, neighbor-to-neighbor communications are preferred. This
is really a prominent goal for fine-grain target architectures like systolic arrays
and FPGAs.

A more precise goal for placement is to minimize the number of communica-
tions between the host and the processing elements and to minimize the average
distance of inter-PE communications.

In the next sections, we show how to get closer to these goals.

9.4 Eliminating host broadcasts

Broadcasts from the host-side to processing elements are the most typical case
where communications can be reduced further than by just choosing the best
loops to carry placement.

9.5 Related works

This scheme is the opposite of the owner computes rule where the data are
assigned to processors and the computations happen where the data is. The
owner computes approach is only clearly defined in some cases. When data

59

necessary for a computation are spread across multiple processing elements, no
processor owns all the data so ad hoc rules are used.

60

10 Local Memory Compaction

One of the crucial tasks of the mapper is to allocate local memory for architec-
tures with fast but limited scratchpad memories on distributed memory archi-
tectures. When data is being migrated from one memory to another, we have an
opportunity to also perform a reorganization of the data layout. The key idea
that we would like to exploit is adapting the local data layout to improve stor-
age utilization, locality of reference, or enable other optimizations. Such data
layout reorganization often comes “for free” especially if it can be overlapped
with computation via hardware support, such as DMA.

For example, suppose we would like to place the following loop fragment
onto some remote processor:

double A[300][300];

for (i = 0; i < 100; i++) {
... = ... A[2*i+100][3*i];

}

By inspection, we know that only 100 elements out of 90000 of A are accessed
within the loop. Furthermore, access to the array is not contiguous, but contains
gaps, and thus will have less than optimal locality on architectures with cache.
Thus keeping the original data layout (and array size) in the remote processor
is extremely inefficient. As part of the process migration phase, we would like
to compact the layout of the array in the local memory of the remote machine.
A possible transformation is as follows:

double A_local[100]; // local memory

transfer A[2*i+100][3*i] to A_local[i], i = 0 . . . 99
for (i = 0; i < 100; i++) {

... = ... A_local[i];

}

Transforming the reference from A[2*i+100][3*i] to A_local[i] reduces
the storage requirement of local memory from 300 × 300 to the optimal 100
elements. Today, the above transfer can be realized efficiently with DMA hard-
ware with strided access. Thus, performing the data rearrangement not only
improves local memory utilization and locality, it can also be done very cheaply
given some standard hardware support.

10.1 Motivating Examples

We now give a few more motivating examples for the local memory compaction
phase.

Suppose we have the following loop fragment with a system parameter M and
suppose we would like to map it onto a remote processor.

61

// Kernel with parameter M

for (i = 0; i <= 5; i++)

for (j = 0; j <= 10; j++)

for (k = 0; k <= 15; k+=2) {
... = A[i,i+M];

... = B[2*i,2*j];

j.. = C[k/2,k/2+20];

}

By examining the loop nests, we observe a few inefficiencies in memory
usage. The data footprint of A[i,i+M] is one dimensional but it occupies a 2-D
array. For efficiency, the array A should be compacted into 1-D in local memory.
Similarly, the data footprint of C[k/2,k/2+20] is also one dimensional. The
data footprint of B[2*i,2*j] is two-dimensional but it contains gaps, and at
most 1/4 of the data is actual touched. Again, for efficiency, we would like to
remove these holes when it is moved into local memory.

Consider another loop fragment below.

for (i = 0; i <= 5; i++) {
for (j = 0; j <= 10; j++) {
for (k = 0; k <= 15; k++) {
... = A[i+2*k,j-k+15];

}
}

}

The extents of the reference A[i+2*k,j-k+15] are [0, 35] and [0, 25] in the
first two dimensions. So we required 36 × 26 = 936 elements to store A in
local memory. However, a change of basis to A_l[i+2j,j-k+15] can reduce the
storage requirements to 26 × 26 = 676.

Consider the following loop fragment where the loop kernel to be mapped
onto a local processor is an inner loop of some larger loop nests.

for (i = 0; i < 100; i++) {
// kernel starts here ...

for (j = 3*i; j < 3*i+100; j++) {
... = ... A[j] ...;

}
// end of kernel

}

Note that the extent of A[j] is [0, 400), but within each iteration of i the
kernel uses only 100 elements. If we use a naive local memory allocation scheme,
we would require the same number of elements in the local memory. Clearly,
the problem is that the data footprint of A[j] is a function of the outer loop

62

index i. By shifting the reference locally to A_local[j-3*i] we can reduce the
storage need to the optimal 100.

Consider a similar loop fragment as the previous one. In this fragment, we
have an extra system parameter N.

for (i = 0; i < N; i++) {
// kernel starts here ...

for (j = 3*i+N; j < 3*i+100+N; j++) {
... = ... A[j] ...;

}
// end of kernel

}

This example is very similar to previous loop fragment. However, note that
we cannot allocate A locally in a bounded amount of storage if we don’t readjust
the indices on A, because the variable N is unbounded. However, it is also obvious
that we only require 100 elements in the local memory, because each iteration of
i only 100 elements of A is actually referenced. This shows that in the presence
of parameters, reindexing is necessary.

Next, consider the following matrix multiply loop nests where M, P and N

are system parameters. We would like to map the three innermost loops onto a
remote processor.

for (i = 0; i <= -1 + M; i += 10)

for (j = 0; j <= -1 + P; j += 10)

for (k = 0; k <= -1 + N; k += 10)

// Kernel starts here

for (l = i; l <= min(-1 + M, 9 + i); l++)

for (m = j; m <= min(-1 + P, 9 + j); m++)

for (n = k; n <= min(-1 + N, 9 + k); n++)

C[l, m] = C[l, m] + A[l, n] * B[n, m];

// Kernel end here

In this example, the data footprints of A, B, C are all 10 × 10 within the
l,m,n loops. We can achieve the mapping by allocating three local arrays A_l,
B_l and C_l, and rewrite the global references to local references as follows:

• A[l,n] to A_l[-i+l,-k+n],

• B[n,m] to B_l[-k+n,-j+m], and

• C[l,m] to C_l[-i+l,-j+m].

We now move on to two examples with more complex tiled iteration spaces.
The first example is the following:

63

for (i = 0; i <= 9; i += 2)

for (j = max(-1, -9 + i); j <= min(4, 3 + i); j += 2)

// Kernel starts here

for (k = max(1, i, i - j);

k <= min(4 + i - j, 1 + i, 9); k++)

for (l = max(- i + j + k, 1);

l <= min(4, 1 - i + j + k); l++)

A[k, 2*l] = A[k, 2*l-2] + A[k-1, 2*l-2];

// Kernel ends here

To obtain a legal local memory allocation, we allocate a local memory array
A_l of size 3 × 7. Then we reindex the global references to local references as
follows:

• A[k, 2*l] to A_l[k-i+1, 2*l-2*j+2],

• A[k, 2*l-2] to A_l[k-i+1, 2*l-2*j], and

• A[k-1,2*l-2] to A_l[k-i, 2*l-2*j].

The second example is a tiled stencil loop nests:

for (i = 0; i <= -1 + N; i += 3)

for (j = 0; j <= -1 + N; j += 4)

// Start of kernel

for (k = i; k <= min(2 + i, -1 + N); k++)

for (l = j; l <= min(-1 + N, 3 + j); l++)

A[l,k] = (B[l-1,k] + B[l+1,k] + B[l,k-1] + B[l,k+1]) / 4;

// End of kernel

To obtain a legal local memory allocation, we allocate two local arrays A_l
and B_l of sizes 4 × 3 and 6 × 5 respectively. Then the global references are
rewritten to the local references as follows:

• B[l-1,k] to B_l[l-j,k-i+1],

• B[l+1,k] to B_l[l-j+2,k-i+1],

• B[l,k-1] to B_l[l-j+1,k-i], and

• B[l,k+1] to B_l[l-j+1,k-i+2].

10.2 Algorithm

The general problem statement can be stated simply as follows. We are given a
set of loop nests with parametric affine array references A1[f1(x)], . . . , An[fn(x)].
The result of local memory compaction is a mapping of these global references
to new local references:

Ai[fi(x)] 7→ A′
i[gi(x)], i = 1 . . . n

64

where A′
i are new arrays to be allocated in the local memory of the remote

processor.
To restrict ourselves to only “efficiently” executable transformations, the

access functions gi must be affine. Thus the transformation from fi 7→ gi is also
affine13.

Our algorithm contains the following three basic steps:

• Partition the set of references so that related references are grouped and
allocated together.

• For each group of referenced decided in step (1), perform algebraic sim-
plification via Hermite decomposition [Sch86].

• For each group of references, perform geometric rearrangement via uni-
modular reindexing.

The next sections describe these steps in detail.

10.3 Group related references

Our algorithm allocates different arrays independently. References to the same
array are generally allocated together if they overlap. Non-overlapping refer-
ences are placed into distinct allocation groups to minimize their interference.

To see why the choice of groups is important, consider the following loop
nests from the innermost loops of tiled LU decomposition14

float A[256][256];

doall (l=128*j+16*P; l <= min(-i+254,128*j+16*P+15); l++)

doall (m = 16*k; m <= min(-i+254, 16*k+15); m++)

A[1+i+m][1+i+l] -= A[1-i+m][i] * A[i][1+i+l];

All three references to the array A happen to be disjoint, i.e., they access
disjoint areas of the array when the loops. Thus we can allocate these refer-
ences separately. For example, we can transform the above loop nests into the
following inner loops using new local variables A_2, A_3, A_4:

float A_2[16][16]; // a triangular subregion of A

float A_3[16]; // a column of A

float A_4[16]; // a row of A

// DMA code omitted

13In principle, it is possible to reduce memory usage by considering other types of transfor-
mations, such as piece-wise affine functions, or modular mappings. However, the use of such
transformations may cause degradation in performance in many common situations, because
these indexing functions are more expensive to compute.

14Variable i, j and k are outer loop indices, and the variable P is a parameter standing for
the current processor.

65

doall (l = 0; l <= min(15, -i-128*j-16*P+254); l++)

doall (m = 0; m <= min(-i-16*k+254, 15); m++)

A_2[m][l] -= A_3[m] * A_4[l];

Note that if all three references are to be allocated together as a single unit,
we must map the three references to the same local array. Since only affine
transformations are allowed, the amount of storage required is 256 × 256, i.e.,
we require the same amount of local memory as global memory.

On the other hand, it is clear that is is not always optimal to group over-
lapping references together. For example, consider the following inner loop
fragment15

double A[100][100];

for (j = 0; j < 100; j++) {
.. = A[i][j] * A[j][i];

}

The two references A[i][j] and A[j][i] overlap when i=j. However, if
we allocate the references together, it is impossible to reduce the local memory
usage using only affine transformations. This is because the data footprint of
the two references (a cross) is a 2-dimensional set, while the data footprints of
the individual references are both 1-dimensional.

In order to compute better allocations in situations like this, our algorithm
will first estimate how much overlapping is in the references. If the references
are read-only, and if overlapping is a tiny percentage of the overall area, our
algorithm will split the references into distinct groups. In the above example,
our algorithm will generate the following local memory allocation. Note that
the center element of the data foot print, A[i][i], has been replicated and put
into the locations A_1[i] and A_2[i]:

double A_1[100];

double A_2[100];

Transfer A[i][j] to A_1[i], i = 0 . . . 99
Transfer A[j][i] to A_2[i], i = 0 . . . 99

for (j = 0; j < 100; j++)

... = A_1[j] * A_2[j];

10.4 Hermite Decomposition

The purpose of Hermite decomposition is to reduce the dimension of the refer-
ence to the actual geometric dimension of the data footprint. In addition, if the

15Variable i is an outer loop index.

66

access pattern contains strides, this step removes these strides in the resulting
local references.

The technique is as follows. Given an affine function f(x, y) on loop indices
x and parameters y, we first decompose it into the sum of g(x) + h(y), where
g(x) is a linear function on x and h(y) is an affine function on y. Function g(x)
can be decomposed into g(x) = HU , where H = [H ′0] is the Hermite Normal

Form of g and U is unimodular matrix. Let U =

[

U1

U2

]

where HU = H ′U1.

We can then generate the following mapping from global to local indices:

f(x, y) 7→ U1x

10.4.1 Example 1

For example, suppose we are given the following loop nests:

double A[300][300];

for (i = 0; i < 100; i++) {
... = ... A[2*i+100][3*i];

}

The access function is f(i) = [2i + 100, 3i]. Rewriting this in matrix form,
we have:

f(i) =

[

2
3

]

[i] +

[

0
1

]

[1]

=

[

2
3

]

[1][i] +

[

0
1

]

[1]

Thus H =

[

2
3

]

and U = [1], which gives the following global to local

mapping:
[2i + 100, 3i] 7→ [i]

10.4.2 Example 2

The example below contains three references, each of which is to be treated
separately:

float A[256][256];

doall (l=128*j+16*P; l <= min(-i+254,128*j+16*P+15); l++)

doall (m = 16*k; m <= min(-i+254, 16*k+15); m++)

A[1+i+m][1+i+l] -= A[1-i+m][i] * A[i][1+i+l];

67

The three references are:

f1(l, m, i, j) = [1 + i + m, 1 + i + l]

f2(l, m, i, j) = [1 − i + m, i]

f3(l, m, i, j) = [i, 1 + i + l]

Note that the outer loop indices i, j are treated as parameters. We can
decompose the references as follows:

f1(l, m, i, j) =

[

0 1
1 0

] [

l
m

]

+

[

1 0 1
1 0 1

]

i
j
1

=

[

1 0
0 1

] [

0 1
1 0

] [

l
m

]

+

[

1 0 1
1 0 1

]

i
j
1

f2(l, m, i, j) =

[

0 1
0 0

] [

l
m

]

+

[

−1 0 1
1 0 0

]

i
j
1

=

[

1 0
0 0

] [

0 1
1 0

] [

l
m

]

+

[

−1 0 1
1 0 0

]

i
j
1

=

[

1
0

]

[

0 1
]

[

l
m

]

+

[

−1 0 1
1 0 0

]

i
j
1

f3(l, m, i, j) =

[

0 0
1 0

] [

l
m

]

+

[

1 0 0
1 0 1

]

i
j
1

=

[

0 0
1 0

] [

1 0
0 1

] [

l
m

]

+

[

1 0 0
1 0 1

]

i
j
1

=

[

0
1

]

[

1 0
]

[

l
m

]

+

[

1 0 0
1 0 1

]

i
j
1

From the above decompositions, we can obtain the following global to local
memory mappings:

A[1 + i + m][1 + i + l] 7→ A1[m][l]

A[1 − i + m][i] 7→ A2[m]

A[i][1 + i + l] 7→ A3[l]

10.5 Unimodular Reindexing

The final step of unimodular reindexing reorients a skewed data footprint so
that the resulting access pattern is more rectangular than before. The problem

68

can be stated as the following optimization problem. Given

1. An array A in d dimensions,

2. A set of system parameters y = [y1, . . . , yk], and

3. A parametric data footprint set D(y) for a group of references to array A.

We want to find:

1. The dimensions of the local array S : Zd,

2. An affine function L : Zk → Zd which represents the lower bound of the
local array as a function of the parameters y, and

3. An unimodular matrix U : Zd×d, which represents the skewing to be done
in the original footprint.

We can succinctly phrase this optimization problem as follows:

min
∏

i Si

L(y) ≤ Ux < L(y) + S, ∀x ∈ D(y)
S : Zd

L : Zd → Zd

Uunimodular

We can interpret the above set of constraints in the following manner. The
product

∏

i Si stands the total size of the local array. Minimizing
∏

i Si thus
minimizes the total amount of storage required. The set {z ∈ Zd | L(y) ≤
z < L(y) + S} represents the bounding box of the local array. Finally, we
allow the data footprint to be automatically “rectangularized” by a unimodular
transformation U .

Given S, L and U , we can generate code for the local array as follows:

• The local array is given the array dimensions S1, . . . , Sd.

• The global array element x is moved to the local array element Ux−L(y).

10.5.1 Solving the optimization problem

The above optimization problem contains non-linear constraints, non-linear op-
timization objective and integer constraints. Currently, we perform the following
steps to solve this optimization problem:16

• We apply Farkas Lemma to remove the universal quantification in ∀x ∈
D(y). The result is a finite set of constraints.

• Instead of solving for all dimensions all at once, we perform a linearization
of the constraints and generate a sequence of optimization problems, one
for each dimension.

16The details of these steps are beyond the scope of this report.

69

• Each set of subproblem reduces to a small integer linear programming
problem which can be solved using standard solving in milliseconds.

• The result of the optimization problems are combined. We iterate these
steps if the current solution proves to be unsatisfactory.

10.6 Generating bulk communication

One of the tasks of the local memory compaction phase is to insert communi-
cation code to transfer data between global and local memories. In order to en-
sure communication overhead is minimized, only bulk communication operations
are generated, and these are inserted only at the boundaries of the innermost
kernels, such that there is no communication operations within a kernel. Dur-
ing communication insertion we assume an asynchronous communication model
with the following primitives at our disposal:

• Asynchronous communication initialization operations such as put and
get. These operations initiate an asynchronous transfer of a region of
data from one processor to another. These (abstract) operations have the
form

get A[f(x, y)] from B[g(x, y)] for x ∈ D(y) tag t;
put A[g(x, y)] to B[f(x, y)] for x ∈ D(y) tag t;

where A is a local array, B is a global array, y are the system parameters,
and (f, g,D) together describe the set of elements to be transferred. The
semantics of the get operation is identical to the following loop nests:

for x ∈ D(y)
A[f(x,y)] = B[g(x,y)];

where the put is identical to the following:

for x ∈ D(y)
B[f(x,y)] = A[g(x,y)];

• A wait t operation which blocks the execution of a thread until a group
of initiated communications have completed. Groups of communication
operations are associated with a tag t.

It should be stressed that the above primitives are abstract in nature, and do not
have to correspond directly to actual target machine primitives. In Section 12
we shall describe how we map these primitives into lower level DMA operations.

The following example illustrates how communication operations are inserted
by our mapper. Suppose we would like to map the following matrix multiply
onto a distributed memory machine with 8 distributed processor elements:

70

float A[1024][1024];

float B[1024][1024];

float C[1024][1024];

for (int i = 0; i <= 1023; i++) {
for (int j = 0; j <= 1023; j++) {

for (int k = 0; k <= 1023; k++) {
C[i][j] = C[i][j] + A[i][k] * B[k][j];

}
}

}

After affine scheduling, tiling and processor placement, we can obtain the
following single-program, multiple data (SPMD) loop nests, where the newly
introduced parameter P ranges from 0 to 7 and stands for the current processor
id.

float A[1024][1024];

float B[1024][1024];

float C[1024][1024];

for (int i = 0; i <= 31; i++) {
for (int j = 128 * P; j <= 128 * P + 127; j++)

for (int k = 32 * i; k <= 32 * i + 31; k++)

C[j][k] = 0;

for (int j = 0; j <= 15; j++)

for (int k = 128 * P; k <= 128 * P + 127; k++)

for (int l = 32 * i; l <= 32 * i + 31; l++)

for (int m = 64 * j; m <= 64 * j + 63; m++)

C[k][l] = C[k][l] + A[k][m] * B[m][l];

}

The above loop nests operate on arrays A, B, and C, which are located in
the memory of the host processor. In order to produce a distributed memory
mapping, we perform the local memory compaction optimization described in
this section and produces the following loop nests. New local variables A_l, B_l
and C_l are introduced and placed within the memories of the remote processor
units:

local float A_l[128][64];

local float B_l[64][32];

local float C_l[128][32];

float A[1024][1024];

float B[1024][1024];

float C[1024][1024];

for (int i = 0; i <= 31; i++) {
for (int j = 128 * P; j <= 128 * P + 127; j++)

71

for (int k = 32 * i; k <= 32 * i + 31; k++)

C_l[j -128 * P][-32 * i + k] = 0;

put C_l[j][k] to C[j + 128 * P][32 * i + k],

for 0 <= j <= 127, 0 <= k <= 31 tag 1;

wait 1;

for (int j = 0; j <= 15; j++) {
// fetch submatrices from A, B and C

get B_l[k][l] from B[64 * j + k][32 * i + l]

for 0 <= k <= 63, 0 <= l <= 31 tag 0;

get A_l[k][l] from A[k + 128 * P][64 * j + l]

for 0 <= k <= 127, 0 <= l <= 63 tag 0;

get C_l[k][l] from C[k + 128 * P][32 * i + l]

for 0 <= k <= 127, 0 <= l <= 31 tag 0;

wait 0;

// kernel

for (int k = 128 * P; k <= 128 * P + 127; k++)

for (int l = 32 * i; l <= 32 * i + 31; l++)

for (int m = 64 * j; m <= 64 * j + 63; m++)

C_l[k -128 * P][-32 * i + l] +=

B_l[-64 * j + m][-32 * i + l] *

A_l[k -128 * P][-64 * j + m];

// write back a submatrix of C

put C_l[k][l] to C[k + 128 * P][32 * i + l]

for 0 <= k <= 127, 0 <= l <= 31 tag 1;

wait 1;

}
}

10.7 Related Work

Our algorithmic framework is based mostly on the work of Schreiber et al. [SC04].
Our work generalizes theirs in different ways:

• Our unimodular reindexing algorithm works for the full polyhedral model
with arbitrarily shaped parametric iteration domains. In contrast, previ-
ous work only considers perfectly nested loops with non-parametric rect-
angular iteration spaces.

• Our algorithm correctly deals with domains with strides by first extracting
the lattice within the domains.

• Our algorithm deals with non-convex data footprints by

– Splitting disjoint sets into distinct data references

– Splitting regions with small overlaps

72

• Our algorithm also automatically generates asynchronous DMA commu-
nication operations to transfer data between local and global memories.
Multi-buffering is used to overlap communication and computation.

73

11 Multi-buffering

The mapping in the previous section can be further improved by allowing com-
munication and computation to be overlapped in time via the use of double-
buffering or multi-buffering schemes. The idea of double-buffering is as follows:
data needed for iteration i + 1 of the computation kernel is prefetched in one
buffer while we are executing iteration i using the other buffer. Similarly, we
can overlap writing data back with prefetching data and with computations by
delaying the write-back by one iteration and adding yet another buffer. Data
for iteration i + 1 is prefetched into one buffer while computation kernel for
iteration i is executed using the second buffer and output data from iteration
i − 1 is sent back from the third buffer.

Triple buffering makes it possible to fetch, execute and write back at the
same time, when the target machine allows for it, i.e., when it has full-duplex
asynchronous communication capabilities. Double buffering is useful when com-
munications are half-duplex (and asynchronous). Using more buffers (which is
called multi-buffering) tends to smoothen communication times, but it also re-
duces the size of data sent and received. Hence it reduces the granularity of
parallelism.

Let B be the number of buffers used, a the number of iterations separating
the fetching of input data from the execution of the kernel that uses it, and l
the number of iterations between the execution of a kernel and the sending of
data it has produced. The relation between a, l and B is given by

a + l ≤ B − 1

There are only two useful cases:

• the equality, which maximizes the positive impact of covering communi-
cations with computations;

• and the case when a + l = B − 2, in which case one buffer is not used for
either communication or computation. Instead, it contains the results of
computation i− (B − 1). In the case when there is a lot of reuse between
tasks i and i − (B − 1), output data from task i − (B − 1) can be copied
locally instead of going back and forth to the host or another PE. This
optimization is especially relevant when the reuse is not perfect, i.e., when
there is not a data set that is used and/or defined and that is always the
same across task iterations (for instance across iterations of the innermost
inter-task loops). In this latter case, the perfectly reused data set should
be “promoted”, i.e. it should live constantly in the PEs’ local memory as
long as it is fully reused.

11.1 Multi-buffering with loop interchange

Our communication insertion algorithm performs these steps:

74

1. If we are performing B-buffering where B is the number of buffers, then
we readjust the upper limit of local memory by a factor of 1/B to ensure
that there is enough local memory. Each local array is given B versions
in the mapped layout.

2. We perform loop interchange in the outer loop nests surrounding the ker-
nels in order to ensure the loop nests immediately surrounding a kernel has
no loop-carried dependences. Hence, what happens (sending or receiving
data, working on a present data set) in one of the buffers is independent
of what is done in any other buffer, which makes it legal to have send and
receive operations executed concurrently with tasks.

3. When B > 1, we perform loop-shifting to shift get operations ahead a
iterations.

4. If B > 2, the write-back step can also be pipelined. If so, we perform
loop-shifting to shift the wait operation, which waits for the completion
of the put operations back l iterations, with l = B − a − 1.

Note that loop interchange and loop shifting can be expressed as simple trans-
formations in the polyhedral representation (see Sections 2 and 4).

For example, using the above steps,we can obtain the following pipelined
execution of matrix multiply (double-buffering is used.)

local float A_l[2][128][64];

local float B_l[2][64][32];

local float C_l[2][128][32];

float A[1024][1024];

float C[1024][1024];

float B[1024][1024];

for (int i = 0; i <= 15; i++) {
if (i == 0) {

for (int j = 0; j <= 32; j++) {
if (j >= 1) {

swap C_l[0] and C_l[1];

}
if (j <= 31)

for (int k = 128 * P; k <= 128 * P + 127; k++)

for (int l = 32 * j; l <= 32 * j + 31; l++)

C_l[0][k -128 * P][-32 * j + l] = 0;

if (j >= 1) wait 1;

if (j <= 31)

put C_l[0][k][l] to C[k + 128 * P][32 * j + l]

for 0 <= k <= 127, 0 <= l <= 31 tag 1;

}
}
for (int j = -1; j <= 32; j++) {

75

if (j <= 31 && j >= 0) {
wait 0;

swap A_l[0] and A_l[1];

swap B_l[0] and B_l[1];

swap C_l[0] and C_l[1];

}
if (j <= 30) {

get B_l[1][k][l] from B[64 * i + k][32 + 32 * j + l]

for 0 <= k <= 63, 0 <= l <= 31 tag 0;

get A_l[1][k][l] from A[k + 128 * P][64 * i + l]

for 0 <= k <= 127, 0 <= l <= 63 tag 0;

get C_l[1][k][l] from C[k + 128 * P][32 + 32 * j + l];

for 0 <= k <= 127, 0 <= l <= 31 tag 0;

}
if (j <= 31 && j >= 0) {

for (int k = 128 * P; k <= 128 * P + 127; k++)

for (int l = 32 * j; l <= 32 * j + 31; l++)

for (int m = 64 * i; m <= 64 * i + 63; m++)

C_l[k -128 * P][-32 * j + l] +=

B_l[-64 * i + m][-32 * j + l] *

A_l[k -128 * P][-64 * i + m];

}
if (j >= 1) wait 1;

if (j <= 31 && j >= 0) {
put C_l[0][k][l] to C[k + 128 * P][32 * j + l]

for 0 <= k <= 127, 0 <= l <= 31 tag 1;

}
}

}

A few clarifications are due in order to explain the above loop nests:

• the outermost doall loop was interchanged to the third loop level (k in the
code).

• Two copies of local arrays are reserved for the variables A_l, B_l, C_l. We
represent these extra copies as an extra dimension in the array indices.

• In the actual generated code, two pointers are used to perform swapping.
The swapping operation can be implemented by simply swapping these
two pointers.

• When B > 2, the swapping operation is replaced by a more general buffer
rotation operation.

• The prologue and epilogue stages of the pipeline are embedded within
the loop nests and are selectively enabled and disabled using the proper

76

guards. While the placement of these guards seems complex, they are
indeed automatically generated in the final code generation phase of the
mapper (See Section 15.)

11.2 Multi-buffering with loop jamming

Let B be the chosen number of buffers. The loop interchange technique pre-
sented in last section puts a doall loop as innermost inter-task (inter-tile) loop,
so that tasks executed consecutively are independent of each other, and so their
buffers can be processed (sent, received, computed on) concurrently. Doing
this is sufficient, but not necessary. The necessary condition is that any task
k is independent of tasks whose buffer will be processed concurrently with the
buffers of task k. These tasks are tasks (k − B + 1) to (k + B − 1). In other
words, the necessary condition for multi-buffering to be legal is that two depen-
dent tasks are separated by B−1 independent tasks. The basic idea behind the
multi-buffering technique presented in this section is to insert B−1 independent
iterations between dependent iterations of the innermost inter-task (inter-tile)
loop level.

This new method is motivated by several disadvantages of the multi-buffering
technique presented in the previous subsection.

• As buffer rotation is performed through a run-time pointer there is no
direct correspondence between loop indices and buffer indices. Hence,
analysis of dependences involving arrays in local memory (so in buffers)
cannot be stated as a function of loop indices or parameters. As a conse-
quence, dependence analysis is not precise for those data.

• The performed loop interchange modifies (destroys) linear properties ob-
tained by the scheduling component: grain of parallelism and locality of
data accesses.

• One doall loop is selected to scan sequential but independent iterations
that periodically use the buffers. Hence, all the independent iterations of
this loop are sequentialized, while only B sequential independent iterations
are necessary between two dependent iterations, for all the B send, receive
and execute operations to be independent. In other words, the amount of
parallelism sacrificed for multi-buffering with the loop interchange method
equals the trip count of the doall loop that is interchanged, while only a
factor of B parallel iterations would be necessary.

The new multiple buffering scheme allows to obtain multi-buffering in the
same cases in which the old one can, but without the issues of the latter.

The old scheme ensures a dependence distance of at least B by having the
innermost loop nest scan independent iterations. This actually ensures an de-
pendence distance.

The nice properties of the new scheme come from the fact that it introduces
a dependence distance of exactly B iterations between iterations that work on

77

the same buffer. As there are only B (or B−1, depending on how we define the
difference) independent tasks executed between two originally successive tasks,
the buffer of the originally previous task is still available on the processor and
hence data locality of the original program may be preserved.

Let us show what is done on the following example (which has a similar
structure as matrix multiply). For readability, intra-task loops are represented
with the function calls init and update. Loops scanning independent iterations
are noted doall instead of for.

doall (i=0; i=< n; i++) {
doall (j=0; j<= n; j++) {
init(i,j);

for (k=0; k<= n; k++) {
update(i,j,k);

}
}

}

Imagine that we choose to use the parallelism present in the j loop to set
a quadruple-buffering scheme that receives two buffers ahead. In the original
code, there is a dependence distance of 1 in the innermost loop.

We can strip-mine the j loop by 4 (this corresponds to the change of vari-
able). Let us first assume that n is a multiple of 4.

doall (i=0; i=< n; i++) {
doall (j’=0; j’<= n/4; j’++) {
doall (j’’=0; j’’<=3; j’’++) {
init(i,j’, j’’);

for (k=0; k<= n; k++) {
update(i,j’,j’’,k);

}
}

}
}

and sink the inner strip-mined loop (j′) down to the innermost loop level:

doall (i=0; i=< n; i++) {
doall (j’=0; j’<= n/4; j’++) {
doall (j’’=0; j’’<=3; j’’++) {
init(i,j, j’’);

}
for (k=0; k<= n; k++) {
doall (j’’=0; j’’<=3; j’’++) {

78

update(i,j’,j’’,k);

}
}

}
}

Since the iterations of j′′ are independent, the dependence distance between
consecutive iterations of k is of exactly 4 iterations. Now it remains to generate
the communications, to shift the receive operations ahead by 2 iterations and to
shift completion of the send operations by 1 iteration. Let us look at the code
with communications:

doall (i=0; i=< n; i++) {
doall (j’=0; j’<= n/4; j’++) {
doall (j’’=0; j’’<=3; j’’++) {
init(i,j, j’’);

for (k=0; k<= n; k++) {
doall (j’’=0; j’’<=3; j’’++) {

receive(A,B,C, i,j’,j’’,k);

wait_receive(A,B,C, i,j’,j’’,k);

update(i,j’,j’’,k);

send(C, i,j’,j’’,k);

wait_send(C, i,j’,j’’,k);

}
}

}
}

}

11.2.1 Shifting problem

Now we need to shift the “receive” operations by 2 and the “send completion”
operations by one.

We could do this naively by a change of variables on j′′: j′′recv = j′′ − 2 and
j′′send = j′′ + 1.

But the problem in doing so is that, by construction, j′′ is a very short loop.
Hence, the pipelining effect obtained by shifting the communication operations
is very small, and the resulting performance improvement insignificant.
Example

doall (i=0; i=< n; i++) {
doall (j’=0; j’<= n/4; j’++) {
doall (j’’=0; j’’<=3; j’’++) {
init(i,j, j’’);

79

}
for (k=0; k<= n; k++) {
doall(j’’-2; j’’<=4; j’’++) {
if (j’’ <=1) {

receive(A,B,C, i,j’,j’’+2,k);

}
if (j’’>=0 && j’’<=3) {

wait_receive(A,B,C,i,j’,j’’,k);

update(i,j’,j’’,k);

send(C, i,j’,j’’,k);

}
if (j’’>=1) {

wait_send(C, i,j’,j’’-1,k);

}
}

}
}

}

The pipeline is initiated, enters a very short steady state and finishes, for
each value of k. Indeed send, receive and computations are covered only across
two iterations for each value of k.

For multi-buffering to be worth, what we really want is to pipeline commu-
nications with computations of tasks across a long innermost loop. To do this,
we merge loops k and j′′ into a bigger innermost loop that carries inter-task
dependence of distance B before shifting the communication operations. This
is done by a specific projection that is a particular case of polyhedral flatten-
ing [Clauss00]. Let us call k′ the variable for this new loop, obtained by the
following change of variables:

k′ = 4k + j′′

If the only constraints on k are 0 ≤ k ≤ 3, the order of execution of the
iterations of the resulting k′ loop is exactly the same as the one of loops (k, j′′).
Note that k and j′′ can be expressed in function of k′ as

k = ⌊
k′

4
⌋, j′′ = k′ mod 4

In our example, this gives:

doall (i=0; i=< n; i++) {
doall (j’=0; j’<= n/4; j’++) {

doall (j"=0; j"<=3; j"++) {
init(i,j, j");

}
for (k’=0; k’<= 4n+3; k’++) {

80

receive(A,B,C, i,j’,floor(k’/4), k’%4);

wait_receive(A,B,C, i,j’,floor(k’/4), k’%4);

update(i,j’,floor(k’/4), k’%4);

send(C, i,j’,floor(k’/4), k’%4);

wait_send(C, i,j’,floor(k’/4), k’%4);

}
}

}
}

Now we can shift the receive operation two iterations ahead, giving:

doall (i=0; i=< n; i++) {
doall (j’=0; j’<= n/4; j’++) {

doall (j"=0; j’’<=3; j"++) {
init(i,j, j’’);

}
for (k’=-2; k’<= 4n+3; k’++) {

if (k’ <=4n-2) {
receive(A,B,C, i,j’,floor((k’+2)/4), (k’+2) %4);

}
if(k’ >=0) {

wait_receive(A,B,C, i,j’,floor(k’/4), k’%4);

update(i,j’,floor(k’/4), k’%4);

send(C, i,j’,k’ % 4,floor(k’/4));

wait_send(C, i,j’,k’ %4,floor(k’/4));

}
}

}
}

}

Integer divisions and modulo operations are generally to be avoided, because
they are not linear so they are not easily represented within then polyhedral
model. Also, their computation may be costly at exection time, unless they are
powers of two, like in this example. Besides, we would like to know explicitly
which buffers are accessed, and the natural way of doing that is to have an
affine relation between the loop indices and the buffer number. Removing a
modulo 4 operation suggests the following change of variable (corresponding to
a strip-mining of width 4):

k′ = 4c + d, 0 ≤ d ≤ 3

The resulting code is:

81

doall (i=0; i=< n; i++) {
doall (j’=0; j’<= n/4; j’++) {

doall (j"=0; j’’<=3; j"++) {
init(i,j, j");

for (c = -1; c<=n; c++) {
for (d=max(0, -2-4c), d<=min(4n-4c+3); d++) {

if (4c+d <=4n-2) {
receive(A,B,C, i,j’,c+floor((d+2)/4),(d+2) %4);

}
if (4c+d >=0) {

wait_receive(A,B,C, i,j’,c, d);

update(i,j’,c,d);

send(C, i,j’,c,d);

wait_send(C, i,j’,c,d);

}
}

}
}

}
}

The modulo operation can be automatically removed with the following iden-
tity:

(d + 2) mod 4 =

{

d + 2 for d ≤ 1
d + 2 − 4 = d − 2 for d ≥ 2

To remove the modulo/integer part, the loop index set for the receive oper-
ation should then be split into d ≤ 1 and d ≥ 2. The resulting code is:

doall (i=0; i=< n; i++) {
doall (j’=0; j’<= n/4; j’++) {
doall (j"=0; j’’<=3; j"++) {
init(i,j, j");

}
for (c = -1; c<=n; c++) {
for (d=max(0, -2-4c), d<=min(4n-4c+3); d++) {
if (4c+d <=4n-2 && d<=1) {

receive(A,B,C, i,j’,c,d+2);

}
if (4c+d <=4n-2 && d>=2) {

receive(A,B,C, i,j’,c+1,d-2);

}
if (4c+d >=0) {

wait_receive(A,B,C, i,j’,c, d);

update(i,j’,c,d);

send(C, i,j’,c,d);

82

wait_send(C, i,j’,c,d);

}
}

}
}

}

The same process (which can also be described as flattening, shifting, de-
flattening and index set splitting) is also applied to the send completion opera-
tions, except that we shift them one iteration later.

The resulting code is as close as possible to the original code in the sense
that:

• it is scanned in a similar way: along (i, j, k), although the number of
iterations of j have been divided by 4 and the number of iterations of
k multiplied by 4 (and k is strip-mined). Hence, it preserves properties
(locality, parallelism) brought by any previous transformation based on
the linear characteristics of the program.

• as two dependent iterations of the original program get separated by ex-
actly as many iterations as there are buffers, the values carried by the
dependences are still present in a given buffer when they are needed. Lo-
cality properties of the original program are then preserved, even though
it is on a set of smaller data sets. This is also true for locality between
different statements that are close but not in the same loop, like init and
update in the example: the distance introduced is small enough to avoid
spill-and-fill between their executions.

• Also, no buffer rotation is necessary as the buffers are explicitly identified
(with loop index d).

We have seen this technique with an example. In the next section, we summa-
rize the whole process and generalize it to any number of buffers.

11.2.2 New multi-buffering scheme: summary

Let B be the number of buffers we want to set and a the number of iterations
we want the receive operations to be executed ahead of time. The process of
setting a multi-buffering scheme can be described with the following algorithm:

Select a doall loop to carry the buffer dimension. This loop may carry a
lot of communications, which would turn inter-processor communications into
inter-buffer communications (i.e., reads and writes internal to the processing el-
ements). Let us call j the corresponding variable in the iteration space. Proceed
to the following change of variables:

j = Bj′ + j′′, 0 ≤ j′′ ≤ B − 1

83

and sink the j′′ loop as the innermost inter-tile loop (in the case of imperfectly
nested loops, this is a sink to the innermost inter-tile loops for each of its tiles).
Let k be the innermost loop level before the sinking of j′′. The following oper-
ations are done on all the kernels. Generate asynchronous communications the
simplest way, i.e., so that send and receive operations for an iteration are di-
rectly followed by their wait for completion (called wait send and wait receive

here).

1. Move the receive operations ahead by a (inter-tile) iterations by doing the
following change of variables (that includes index set splitting)

(

k
j′′

)

=

(

c
d + a

)

for d ≤ B − a − 1
(

c + 1
d + a − B

)

for d ≥ B − a

where c and dare the new innermost loop variables.

2. Move the send completion (wait send) operations later in time by (B −
a − 1) iterations by the following change of variables

(

k
j′′

)

=

(

c − 1
d + a + 1

)

for d ≤ B − a − 2
(

c
d + a − B + 1

)

for d ≥ B − a − 1

Because we don’t actually perform the polyhedral flattening, there is no need
for the trip count of the j loop to be a multiple of B. When it is not, d inherits
the additional constraints that appear on j′′.

The main advantages of this method are as follows:

1. there is a direct affine relation between loop index d and the buffer num-
bers. Buffer numbers can be represented as an additional dimension to
the arrays, whose index is then an affine expression of d;

2. hence, there is no explicit buffer rotation to be performed, i.e., inserted
by the mapper;

3. only a finite amount of doall parallelism is turned into pipeline parallelism
between communications and computations, as opposed to a whole degree
of parallelism with the loop interchange method.

11.3 Hierarchical multi-buffering

When target machines have more than two levels of explicitly managed memory,
communications have to be issued at every level. In this document, a level is
called “higher” when it is closer to the PEs. In the classical machine model, the
host is lower than the PEs. An index is assigned to levels, from zero (for the
lowest) up. Let L be the number of levels.

84

memory received from lower level

"active" memory at current level

memory sent to lower level

level 2

PE

level 1

level 0

Figure 6: Hierarchical multi-buffering.

When memory level l can communicate data to level l + 1 and level l − 1
asynchronously and at the same time, it makes sense to overlap both types
(directions) of communications. Hence, in addition to multi-buffering between
levels L−1 (PEs) and L−2, it is profitable to use multi-buffering between levels
L− 2 and L− 3, and so on. The minimal number of buffers still depends on the
communication capabilities between levels L−2 and L−3. The communication
layer must be able of asynchronous communication for any multi-buffering to
be useful. If it is half-duplex, two buffers are necessary, three if it is full-duplex.
A hierarchical multi-buffering with three levels is shown in figure 6.

In hierarchical mappings, a set of tasks at level l can be seen as one bigger
task at level (l−1). Optimal communication granularity is also typically bigger
between levels (l − 2) and (l − 1) than between levels (l − 1) and l. Hence, it
usually makes sense to communicate bigger data sets between levels (l− 2) and
(l − 1), and to have fewer occurrences of these communications.

85

12 DMA Optimization

The Direct Memory Access (DMA) optimization component of the polyhedral
mapper is responsible for turning the abstract communication commands into
an optimal set of DMA transfer commands supported by the underlying tar-
get architecture. Recall from Section 10.6 that the abstract communication
commands have the following forms:

get A[f(x)] from B[g(x)] for x ∈ D(y) tag t;
put A[g(x)] to B[f(x)] for x ∈ D(y) tag t;
wait t

Here, get and put operations are issued to transfer an arbitrary region of
memory from one array to another. All operations are tagged with an inte-
ger tag, and can be blocked until completion when a wait operation with the
corresponding tag is executed.

While there is a wide array of different DMA architectures in the market, we
can safely assume that the following list of characteristics hold for all of them:

• All DMA transfer operations can be asynchronously issued, i.e., DMA
operations can be executed without delaying computation code, thus al-
lowing communication and computation to overlap in time.

• Multiple DMA operations may be issued in parallel, up to some limit.

• One-dimensional strided accesses are possible.

• While many DMA engines impose size and alignment restrictions on the
transfer parameters, we can assume that data structures allocated by the
compiler and by the mapper can be made naturally aligned. Thus part of
the alignment restrictions can be trivially satisfied at compile time.

We are interested in mapping the above DMA operations into one of more
of the following 1-D strided DMA primitives:

dma_get{src=s,dst=t,
count=n,bytes=b,
srcStride=ss,
dstStride=ds,
tag=tag}

dma_put{src=s,dst=t,
count=n,bytes=b,
srcStride=ss,
dstStride=ds,
tag=tag}

dma_wait{tag=tag}

86

where the semantics of dma_get in terms of pseudo code is

dma_get{src=s,dst=t,
count=n,bytes=b,
srcStride=ss,
dstStride=ds,
tag=tag} =

for (i = 0; i < count; i++, s += ss, d += ds) {
memcpy(d, s, b);

}

The semantics of dma_put can be stated similarly.
In terms of execution cost of DMA operations, we assume the following is

true:

• There is a substantial startup cost for each DMA operation.

• There is a transfer cost for each byte in the message.

The actual startup cost and transfer rate is parameterized in the machine model
of the target machine. However, given such constraints, we can formulate the
DMA optimization problem as follows:

• Minimize the total number of DMA commands issued.

• Minimize the total number of bytes transferred.

12.1 Example

Let us now clarify the DMA generation problem with an example. Suppose we
are given the following communication commands embedded in a loop nest:

double A[128][128];

double B[128][128];

double A_l[16][16];

double B_l[16];

double C_l[16][16];

for (i = ...) {
for (j = ...) {

...

get A_l[k][l] from A[16 * P + k][16 * i + l]

for 0 <= k <= 15, 0 <= l <= 15 tag 0;

get B_l[k] from B[16 * j + k][16 * i + k]

for 0 <= k <= 15 tag 0;

get C_l[l][k] from C[16 * P + k][16 * i + l];

for 0 <= k <= 15, 0 <= l <= 15 tag 0;

87

wait 0;

...

}
}

In each iteration of i and j, we fetch a rectangular 16×16 block of A into A_l, a
diagonal segment of B into B_l and another rectangular 16× 16 block of C into
C_l, but with its rows and columns permuted, i.e., a corner turn.

One possible mapping is as follows:

for (i = ...) {
for (j = ...) {

...

dma_get{src=&A[16*P][16*i], dst=&A_l[0][0],

count=16, bytes=16*sizeof(double),

srcStride=128*sizeof(double),

dstStride=16*sizeof(double), tag=0};
dma_get{src=&B[16*j][16*i], dst=&B_l[0],

count=16, bytes=sizeof(double),

srcStride=128*sizeof(double),

dstStride=sizeof(double), tag=0};
for (l = 0; l < 15; l++) {

dma_get{src=&C[16*P][16*i+l],
dst=&C_l[l][0],

count=16,

bytes=sizeof(double),

srcStride=128*sizeof(double),

dstStride=sizeof(double),

tag=0

};
}
dma_wait{tag=0};
...

}
}

}

We can interpret the DMA mapping as follows:

• For array A, we use a strided DMA command to transfer 16 rows of A,
with each block having 16 elements. The result is compacted into the
array A_l.

• For array B, we use a strided DMA command to transfer a diagonal seg-
ment of A into A_l. The strided DMA command transfers 16 blocks each
of 1 element long. The source stride is staggered so that the diagonal is
transfered.

88

• For array C, we issue 16 strided DMA operations to transfer C_l. Note
that a single strided DMA operation is insufficient because it is a corner
turn.

• Finally, we issue the dma_wait command to block until all DMA operations
have completed. Of course, it is possible to overlap communication and
computation by delaying the wait operation further. For simplicity, we
treat this as orthogonal issue in this section. (See Section 11 for details.)

12.2 Algorithm

The DMA optimization algorithm implemented in the R-Stream mapper cur-
rently defaults to a C style storage layout order, i.e., row major order. When
compiling a language with a different storage layout order, suitable modification
can be made to the parameterizable machine model.

We currently optimize each communication command separately. Given a
communication command,

get/put A[f(x, y)] from/to B[g(x, y)] for x ∈ D(y) tag t;

The algorithm partitions D(y) into a set of polyhedra whose union contains the
integer points of D(y). Such polyhedra are defined by

M(x0, y) = D(y) ∩ S(x0, y), x0 ∈ D(y) ∩ Zd+p+1

where d is the number of variables, p is the number of parametersm, and S(x0, y)
is the (d − c)-dimensional subspace of Qd that is spanned by a set of (d − c)
vectors S = (s1, · · · , sd−c) and contains point x0. It is always possible to find
an integer unimodular matrix V whose rightmost column vectors span SQd−c

(proof uses Hermite normal form). Let D′ be the image of D by V . The
(d − c) last variables of D′ scan the image of the M ’s. Within a data set to be
communicated, there is no legality constraint on the order in which the data
should be communicated, so any unimodular V is legal.

Let M ′(x′
0, y) be the image of M(x0, y) through V . Each distinct M ′(x′

0, y) is
meant to be communicated at once by a single strided communication operation.
Let a(x) = a.x+α and b(x) = b.x+β be the storage functions for arrays A and
B.

The exact data set M ′ can be communicated at once using a communication
operation if

ma(x′
1, · · · , x′

c) = {(ac+1, · · · , ad).(x
′
c+1, · · · , x′

d)
T | x′ ∈ D′(y)}

and
mb(x

′
1, x

′
c) = {(bc+1, · · · , bd).(x

′
c+1, · · · , xd)

T | x′ ∈ D′(y)}

are each defined by exactly one Z-polyhedron for x′ ∈ D′. Note that this is
always true in the case when d − c = 1 and f(x, y) and g(x, y) are invertible.
Hence, a heuristic for minimizing the number of communication operations is

89

to find S that minimizes c. This would not take into account the number of
data along S but only the number of data dimensions in each communication
operation.

ma is communicated onto mb for all the valid integer values of (x′
1, · · ·x

′
c−1)

in D′. This set of valid values is basically the projection of D′ on the subspace
of variables (x′

1, · · · , x′
c−1), which defines the iteration domain of the communi-

cation operation that we are building.
If ma and mb are each one Z-polyhedron, a base address and stride is com-

puted for both sides:

base(A, (x′
1, · · · , x′

c)
T) = (a1, · · · , ac)(x

′
1, · · · , x′

c)
T) + min(ma(x1, · · · , xc)) + α

base(B, (x1, · · · , xc)
T) = (b1, · · · , bc)(x

′
1, · · · , x′

c)
T) + min(mb(x1, · · · , xc)) + β

The strides are given by the linear part of the supporting lattices of ma

and mb, which are constant across the values of y and (x1, · · · , xc)
T (up to the

“center” of the lattice, which is meaningless w.r.t. strides and is accounted for
in the base address).

The number of packets in the message is given by the Ehrhart polynomials
of ma and mb. If there is a bijection between ma and mb, this number is the
same. If not, it means that there are gather or scatter operations or both, and
the number of transferred data may be ill-defined. If there is either a scatter or
a gather involved, the number of packets is the maximum between the Ehrhart
polynomials of ma and mb. Instead of computing and comparing the Ehrhart
polynomial explicitly, we can take the Ehrhart polynomial of the reference that
has the highest rank.

The size of a packet is set to the size of the array element (assumed to be
the same on both sides).

12.3 Special cases

12.3.1 Big packets

When the size of ma and mb is independent of (x1, · · · , xc−1), and when they
are both contiguous (their supporting lattice is Z), each ma and mb can be
considered as one packet and further data dimensions can be aggregated into
the communication operation. In this case, we rerun the same process on the
iteration domain, by considering what is currently a message as a data element.

12.3.2 Strides not allowed on one side

When the targeted communication layer does not allow strided communication
on one side, the only desirable option is to build messages made of contiguous
data on that side. Without loss of generality, let us assume that the side for
which strided communication is not allowed is the side of array A.

Hence, the column-vectors of S are chosen such that the last dimension of
fV −1 are the (d − c) last canonical vectors.

90

Note that for performance considerations, communicating contiguous data
on one side is usually a good choice, even when there is no restriction on the
communication layer used.

12.3.3 Strides not allowed on any sides

When strides are not allowed on both sides, unless there exists c and S such
that the rightmost column-vectors of both fV −1 and gV −1 are the last canonical
column-vectors, direct transfer is impossible.

In this case, it is necessary to copy output data into a buffer with the right
data layout before sending it and/or after receiving it. In this report, we call
this buffered communication mode “copy-and-communicate”.

Since we usually want to minimize the amount of data to communicate, the
sending side copies its output data into a buffer, the buffer is sent (and received)
as a whole. The data is laid out as needed by the recipient (which is computed
by the local memory optimization component). The abstract communication
operations are turned into copies to the local buffer, and a buffer_send()

is issued. Normally, the recipient does not need to modify the layout of the
incoming data, as it was laid out optimally for it by the sender.

12.3.4 Bijection between both sides

When the elements to be communicated between A and B are related by a
bijection (one-to-one relation)17 it is simpler to work on one of the images, i.e.,
f(D(y), y) or g(D(y), y). They are generally defined by a union of Z-polyhedra,
so it is always possible to form communication commands with d − c = 1 for
each element of this union.

12.4 Further optimization

12.4.1 Simplifying the data transfers by transferring more

In some cases, communicating more data than necessary allows to produce sim-
pler communication operations. It is important, however, to not update a value
invalidly, which would break the program’s semantics.

Examples where enlarging the data set seems profitable:

• interleaved messages whose union is a Z-polyhedron

• data sets with small data holes

• other than that, when the data set to be communicated can be over-
approximated by a bounding hyper-rectangular box, and when the density
of data in the box is high enough. This is subjective and could be set to
50% for instance.

17which is the case currently for the abstract communications provided by the LMO com-
ponent

91

12.4.2 Optimizing for data transfer size

Some communication engines (for instance DMA hardware engines) reach opti-
mal performance when the message has a certain size. Also, certain communi-
cation libraries do not allow message sizes to exceed a given size.

In either case, tiling18 can be applied to D′, in such a way that the number of
data in the tile equals the optimal or maximal number of data. Typically, if the
trip count of the innermost loop level is too short, more tiling levels will be used.
Note that because the data can be sent in any order, tiling copy operations is
always legal.

ma and mb are then formed with the “intra-tile” loops. Again, if their size
is constant, the optimization used in section 12.3.1.

12.4.3 Optimizing for memory banks

Many hardware memories are organized in banks. Data transfers are gener-
ally faster when successive data transfers are issued to different memory banks.
Hence, in addition to forming messages with certain properties, it is desirable
to schedule the communication operations in such a way that consecutive oper-
ations are issued on different memory banks.

Scheduling data transfers for one communication operation
For this, the stride e at loop level c must be greater than (k × bank size×

(nb banks+1)) ≤ e ≤ ((k +1)× bank size×nb banks), where k is existentially
quantified. As the full access function is defined by a(f(V x′, y)), i.e., a.f.V x′,
when x′

c is incremented, the corresponding stride in A is given by the cth column-
vector of afV . Formally, the constraint is then

e = (afV·c)

∃k : (k × bank size× (nb banks + 1)) ≤ e ≤ ((k + 1) × bank size× nb banks)

Other constraints are to be taken into consideration: V has to be full-rank. In
particular, it has to be independent of the subspace S spanning the message.
Also, V has to be unimodular and its last d − c column-vectors must span S.

There is no obvious way to build the set of solutions to all these constraints,
in particular the unimodularity constraint. Hence, a constructive solution seems
more appropriate.

First, we can often eliminate k by fixing it to the maximum size of a mes-
sage19 and computing kmin, the minimum k that makes (k × bank size ×
(nb banks + 1)) bigger than the maximum transfer data set size.

Then, let T defined by V = (T | S). We must define v′·c, the new v·c, as
a combination of the vectors of V such that the resulting matrix, let us call it
V ′, is still unimodular. In other words, we must have V ′ = V U , where U is

18this is iteration tiling, not data tiling, as we are tiling copy operations
19In general, determining this requires combining polynomial upper bounds of Ehrhart

polynomials and Bernstein polynomials. We can ensure a non-parametric upper bound by
limiting the maximum size of a transferred data set as in section 12.4.2

92

integer unimodular. As we don’t change the other column-vectors of V , U is of
the form:

U =

1 0 . . . u1,c . . . 0 0

0 1 . . .
... . . . 0 0

...
. . .

...
...

... uc,c

...
...

...
. . .

...

0 0 . . .
... . . . 1 0

0 0 . . . ud,c . . . 0 1

We can ensure unimodularity of U by fixing uc,c = 1. So the problem
becomes: build a linear combination v′c of the vectors of V such that

(kmin∗bank size∗(nb banks+1)) ≤ afV u·c ≤ ((kmin+1)∗bank size∗nb banks),

with uc,c = 1, which is a system of constraints with (d − 1) free variables. Any
solution is valid, even though to get clean code we will also try to minimize the
coefficients of u·c.

One can also set e to a fixed value like bank size and make the constraint
set simpler. However, there might be no solution to it.

This technique is valid and has solutions if and only if the data set to be
communicated spans more than one memory bank.

Interleaving data transfers for different communication operations
Another solution is to interleave transfers of data that belong to different

memory banks. This is done by first computing the communication operations
and their iteration domain, and then fusing loops of the same dimension and, if
possible, of “similar” shapes, in order to limit the amount of control overhead
that such fusion would entail.

12.5 Implementation

The current implementation deals with the case when there is a bijection be-
tween both sides, is limited to d− c = 1 and chooses S such that communicated
data are contiguous on the PE side.

93

13 Register Tiling

In some cases, the low level compiler does not optimize the PE code for pipelin-
ing, SIMDization and register pressure. For such targets, R-Stream starts its
register tiling component (also called “jamming” as its result is similar to the
well-know unroll-and-jam transformation, without any unrolling) .

The role of this component is to expose as innermost loops:

• a loop scanning s doall-parallel iterations, where s is the SIMD/vector
width of the target PE. These iterations are meant to be SIMDized, i.e.,
turned into target-specific vector intrinsics.

• a loop scanning p pipelinable iterations, where p is large enough to fill the
processor pipeline and small enough to avoid register spilling. Depending
on the capabilities of the target low-level compiler and PEs, these iter-
ations may scan either doall-parallel iterations or pipelinable iterations,
like for instance accumulations or reductions. doall-parallel iterations of-
ten use more registers than iterations with more reuse, like accumulations.

As tilability analysis was already performed in the tiling component, we
know from which loops can be used to for the loops for SIMDization and for
pipeline filling. Our representation keeps track of doall loops additionally, so
there is a clear distinction can be made between pipelinable loops (which are
the tilable loops) and doall-parallel loops.

The loops are formed through a transformation that we called “jamming”
as it resembles unroll-and-jam, without the unrolling. It is equivalent to a strip-
mining followed by a sinking of the inner strip-mined loop.

The loops to be used for SIMD and pipeline loops are chosen according to
several criteria:

• maximal temporal locality (reuse) for the pipeline loop

• maximal spatial locality for both loops

• alignment and data layout constraints, depending on the target architec-
ture, especially its SIMD constraints,

• if there is a loop whose iterations are parallel without communications, it
will be used for SIMD preferably.

The SIMD width of the PEs is given (in bits) as part of the mapper’s machine
model.

13.1 Implementation

There are 1-dimensional and 2-dimensional versions of the register tiling com-
ponent. The 1-dimensional component currently exposes doall iterations for
SIMDization, while the 2-dimensional exposes both types of innermost loops.

94

14 Array Contraction

Array contraction is the opposite of the array expansion optimization described
in Section 6. Whereas array expansion tries to remove false dependences in a
program by increasing the number of storage locations, array contraction tries
to reduce the amount of storage required by collapsing multiple array locations
into a single one.

A classic example of array contraction is the replacement of an array ref-
erence of A[i] into an array of length N by the reference A’[i % L], which
indexes into a bounded buffer of length L.

The basic idea is that different data that are not live at the same time can
share the same memory location (i.e., the same array element).

Here is a very simple example of array compaction:

for (i=0; i<n; i++) {
a[i] = f(i);

b[i+1] = a[i];

}

Here, each element of a is live during only one iteration. Hence, all the elements
of a can use the same memory location. In other words, a can be contracted
into an array of one element or equivalently a scalar. Let us call this scalar a2:

for (i=0; i<n;i++) {
a2 = f(i);

b[i+1] = a2;

}

This process is similar to but not identical to the local array compaction
process described in Section 10. Local array compaction does not attempt to
assign multiple in-use locations in the global array to the same array location
in the local array. Array contraction, on the other hand, does, using liveness
information as a guide.

The array contraction problem can be stated as follows: given a program
together with its schedule (space-time mapping), compute for each array A a
contraction function fA. The contraction functions are applied to all refer-
ences of A. For example, given a reference A[g(x)], the transformed reference is
A[f(g(x))]. Generally speaking, we are interested in finding “easy-to-compute”
non-injective functions f to serve as contraction functions. Of course, in the de-
generate case we may not be able to perform any contraction without violating
the semantics of the program. In such cases we can simply choose f to be the
identity function.

14.1 Lattice based framework

Our array contraction algorithm is based on the lattice based framework of
Darte, Schreiber and Villard described in [DSV03, DSV04, DSV05]. This frame-

95

work computes modulo mappings of the form

f(x) = (Mx) ˆmod b (30)

where (a1, . . . , an) ˆmod (b1, . . . , bn) is interpreted to mean (a1
ˆmod b1, . . . , an

ˆmod bn)

and a ˆmod b is defined as follows:

a ˆmod b = a mod b if b 6= 0

a ˆmod b = a if b = 0

Thus modulo mappings also include linear mappings as a degenerate case.
Darte et al.’s framework has the following basic steps:

1. For each array A, compute the conflict set C of A. The conflict set C is a
polyhedral set such that (i, j) ∈ C implies that locations i and j cannot
be mapped to the same location without violating the semantics of the
program. Conflict set takes the role of

2. Given C, compute its difference set D = {i − j | (i, j) ∈ C}.

3. Compute the Minkowski decomposition of D, i.e., D = L + V . Note that
because D is symmetric, the decomposition does not contain rays. From
the decomposition:

(a) The lines L describes the dimensions of A which cannot be contracted.

(b) The polytope V describes dimensions which can be contracted. We
find a hyper-parallelepiped P which includes V . Intuitively P de-
scribes the amount of total storage which are required to store the
contractible dimensions of A.

From these two components we can compute the contraction function f .

By varying the accuracy of these steps we can derive various algorithms,
some trading compilation speed for compactness of the contraction, and some
trading compactness for compilation speed.

14.2 Algorithm

The preliminary array contraction algorithm implemented in the R-Stream map-
per currently follows these steps:

• compute an approximation of the conflict set;

• compute a linear array contraction function.

We compute the conflict sets using a simple approximation rather than ex-
pensive array dataflow analysis. The latter requires solving parametric integer
programming problems. The approximation assumes that all array locations
are live from the time when the first operation assigns it to the time when the
last operation reads it.

96

Formally, we can phrase the approximation as follows. Suppose that there
is a dependence between statements S and T . Let the dependence polyhedron
RST denote this dependence, i.e., (i, j) ∈ RST implies 〈S, i〉 depends on 〈T, j〉.
Let A[f(x)] and A[g(x)] denote the references in S and T respective which
induce the dependence. And let ΘS and ΘT denote the schedules of S and T .
Then define

C =

(a, b) |

(i, j) ∈ RST

(i′, j′) ∈ RST

a = f(i), b = f(j)
ΘS(i) ≻ ΘT (j′)
ΘS(i′) ≻ ΘT (j)

(31)

For simplicity, we also restrict the contraction functions that we compute to
only linear contractions, i.e., all functions are of the form f(x) = Mx rather

than f(x) = (Mx) ˆmod b. This allows us to stay in the pure polyhedral model.20

We shall relax this restriction in the future when we have more experience with
uses of array contraction.

14.3 Example

The following is a simple example of array contraction in action. We are given
a simple 3-stage filter. Array C is used for both input and output, while arrays
A and B are used to hold temporary data.

for (int i = 0; i <= N; i++) {
for (int j = 0; j <= M; j++) {

A[i][j] = f(C[-2 + i][1 + j]);

}
for (int j = 0; j <= M; j++) {

B[i][j] = g(A[i][1 + j], A[i][j], C[-1 + i][j]);

}
for (int j = 0; j <= M; j++) {

C[i][j] = h(B[i][j], A[i][2 + j], A[i][1 + j]);

}
}

The filters are written as three separate loop nests. Using loop fusion, we
can improve the spatial and temporal locality of the program. The result is the
following loop nests:

if (M >= 0) {
for (int i = 0; i <= N; i++) {

for (int j = -2; j <= min(M + -2, -1); j++) {
A[i][2 + j] = f(C[-2 + i][3 + j]);

}

20Modulo indexing functions are outside of the polyhedral model.

97

for (int j = 0; j <= M + -2; j++) {
A[i][2 + j] = f(C[-2 + i][3 + j]);

B[i][j] = g(A[i][1 + j], A[i][j], C[-1 + i][j]);

C[i][j] = h(B[i][j], A[i][2 + j], A[i][1 + j]);

}
for (int j = max(0, M + -1); j <= M; j++) {

B[i][j] = g(A[i][1 + j], A[i][j], C[-1 + i][j]);

C[i][j] = h(B[i][j], A[i][2 + j], A[i][1 + j]);

}
}

}

Finally, array contraction can be applied to further reduce the memory usage
of the loop nests.

if (M >= 0) {
for (int i = 0; i <= N; i++) {

for (int j = -2; j <= min(M + -2, -1); j++) {
A[2 + j] = f(C[-2 + i][3 + j]);

}
for (int j = 0; j <= M + -2; j++) {

A[2 + j] = f(C[-2 + i][3 + j]);

B = g(A[1 + j], A[j], C[-1 + i][j]);

C[i][j] = h(B, A[2 + j], A[1 + j]);

}
for (int j = max(0, M + -1); j <= M; j++) {

B = g(A[1 + j], A[j], C[-1 + i][j]);

C[i][j] = h(B, A[2 + j], A[1 + j]);

}
}

}

In the above loop nests, array A was transformed from a 2-D array into a 1-D
array. Similarly, array B was transformed from a 2-D array into a scalar variable.

Note that array A can be further contracted to a circular buffer of length
2 if we enable modular mapping in our implementation. This is left for future
extension.

98

15 Polyhedral Scanning

After optimizations have been performed, the R-Stream mapper has to transform
the mapped result in polyhedral form back to the form of the R-Stream internal
representation, the Sprig IR. This code generation process is basically a form
of loop synthesis, and is called polyhedral scanning in the polyhedral research
community. This term arose from the geometric interpretation of the following
operation: we are given a domain D, and we would like to generate a loop nest
such that all integral points x ∈ D are visited in lexicographical order. The
above problem is the same as the problem of code generation for one statement.
In the case of multiple statements, the problem generalizes to the following:
we are given a set D =

⋃

i=1...n Di, where Di denote the iteration domain of
statement Si, and we would like to generate a set of loop nests which visits all
the points x ∈ D in the lexicographical order and execute Si whenever x ∈ Di.

Because of the complex transformations being performed in the R-Stream

mapper, the output loop nests usually have very little similarity with the origi-
nal. Thus the polyhedral scanning problem is not based on syntactic transfor-
mations, but rather on polyhedral operations.

15.1 Example

To illustrate the process of polyhedral scanning, let us begin with a simple
example, taken from [BW94].

Suppose we are given the following one statement loop fragment to process
in the mapper:

for (i = 10; i <= 15; i++)

for (j = 1; j <= 3; j++)

for (k = 1; k <= 50; k++)

S(i, j, k);

The iteration space of the statement can be determined be the simple rect-
angular set:

D = {[i, j, k] | 10 ≤ i ≤ 15, 1 ≤ j ≤ 3, 1 ≤ k ≤ 50}

Initially, the space-time mapping (or schedule) of the statement is the identity.
Let us suppose that the mapper has decided the following schedule Θ pro-

vides the best performance for the loop nest.

Θ(i, j, k) =

0 6 1
1 −3 0
0 1 0

i
j
k

We would like to regenerate a loop nest with implements this schedule. We
can approach the problem as follows. Construct a new polyhedron T , defined
as:

T = {[t1, t2, t3, i, j, k] | [t1, t2, t3] = Θ(i, j, k), (i, j, k) ∈ D}

99

A loop nest can be obtained by by visiting the all the integral points in T in
lexicographical order.

Since in this particular case Θ is unimodular, we can invert Θ in T and
obtain:

D′ = {Θ−1(i, j, k) | [i, j, k] ∈ D}

= {[i, j, k] | 1 ≤ i − 6k ≤ 50, 10 ≤ j + 3k ≤ 15, 1 ≤ k ≤ 3}

By performing successive projections on D′, we obtain the following sets:

D1 = D

= {[i, j, k] | 1 ≤ k ≤ 3, 1 ≤ i − 6k ≤ 50, 10 ≤ j + 3k ≤ 15}

D2 = {[i, j] | 7 ≤ i ≤ 68, 1 ≤ j ≤ 12, 21 ≤ i + 2j ≤ 80}

D3 = {i | 7 ≤ i ≤ 68}

By converting the constraints in these projections as upper- and lowerbounds
on loop nests, we can obtain a three level nested loop as our final result:

for (i = 7; i <= 68; i++)

for (j = max(⌈(21-i)/2⌉,1);
j <= min(12,⌊(80-i)/2⌋); j++)

for (k = max(1,⌈(i-50)/6⌉,⌈(10-j)/3⌉);
k <= min(3,⌊(i-1)/6⌋,⌊(15-j)/3⌋); k++)

S1(j+3k,k,i-6k);

15.2 Formal statement

The formal statement of the polyhedral scanning problem is as follows: given
statements S1, . . . , Sn with (parametric) iteration domains D1(y), . . . , Dn(y),
and space-time (or schedules) mappings Θ1, . . . , Θn, compute a set of loop nests
which executes S1, . . . , Sn in its given order.

Note that it is possible to combine the domains Di with the schedules Θi in
a combined encoding. For instance, define:

D′
i(y) = {[z, x] | z = Θi(x, y), x ∈ Di(y)}

Thus, applying polyhedral scanning on the sets D′
i is equivalent to scanning

(Di, Θi).
A naive solution to the general polyhedral problem is to emit the follow-

ing loop nests as a starting point and progressively simplify and optimize the
resulting code:

for [z, x] ∈
⋃

i D′ i(y) in lexicographical order

if Θ 1(x) ∈ D 1(y) then S_1(x)

...

if Θ n(x) ∈ D n(y) then S_n(x)

100

There are however some difficulties to this approach. Among them are the
following.

• The set
⋃

i D′
i(y) is in general non-convex, and thus cannot be easily ren-

dered into a perfectly nested loop nests.

• The predicates within the inner loops are obstacles to performance.

• Heuristics to optimize the predicates and loop nests may not work in
general. This is particularly true if local heuristics are employed.

15.3 Related works

There is a wealth of results in the past two decades on the polyhedral scan-
ning problem [AI91, KPR95, KPR98, GLW98, QRW00, QR, Bas03, Bas04a].
Ancourt and Irigoin were one of the first researchers to study the polyhedral
scanning problem restricted to a single loop statement and only unimodular
transformations. Subsequent improvements extends the scope of the problem
to non-unimodular transformations, and to multiple statements. The first algo-
rithm to adequately resolve the general polyhedral scanning problem for multiple
statements is the work of Quillére and Rajopadye [QRW00], with subsequent
performance and code quality improvements by Bastoul [Bas03, Bas04a]. Re-
cent results by Vasilache build on top of those approaches and focus even more
on code generation quality and efficiencey [VBC06, Vas07].

15.4 R-Stream’s polyhedral scanner

R-Stream’s polyhedral scanner is based on the state-of-the-art algorithms of
Quillére et al. [QRW00] and Bastoul [Bas04a] as implemented in the CLooG
polyhedral scanner [Bas04b]. Unlike the naive approach described earlier, these
algorithms are based on recursive decomposition.

The basic algorithm of [QRW00] depends on two basic transformations:

1. Given one domain D, we can generate one perfect scanning loop nest by
repeatedly performing projections on D until all the dimensions have been
projected. This is the same process illustrated earlier in Section 15.1.

2. Given a set of potentially overlapping domains D1, . . . , Dn, where n > 1,
we can scan them as follows:

separation Separate them into a set of disjoint convex domains D′
1, . . . , D

′
m.

polyhedral sorting Topologically sort D′
1, . . . , D

′
m in a given dimension.

This is possible because the D′
1, . . . , D

′
m are disjoint.

recursion Recursively scan the domains D′
1, . . . , D

′
m.

The algorithm in [Bas04a] also contains additional transformations for re-
moving redundant operations; for simplicity, we shall omit such details.

Figure 7 summarizes the Quillére algorithm in pseudo-code.

101

quillere(C, T , d)
(1) Intersects the domains in T with C
(2) Project the domains in T :

for (D → T) ∈ T do
Replace (D → T) by projd(D) → (D → T)

end for;
(3) Separate T into trees with disjoint domains
(4) Sort the separated T
(5) for (D → T) ∈ T do

quillere(D, T , d + 1);
end for;

(5’)Optionally apply the separation/sort steps
(See Quillere’s paper)

(6) Simplify the domains of T against C
return T ;

Separate(P)
Q := ∅;
for Pi ∈ P do

Q′ := ∅;
for Qj ∈ Q do

Q′ := Q′ ∪ (Qj − Pi) (with stms. of Qj);
Q′ := Q′ ∪ (Qj ∩ Pi) (with stms. of Qj and Pi);

end for;
Q′ := Q′ ∪ (Pi − ∪jQj) (with stms. of Pi);
Q := Q′;

end for;
return Q;

Figure 7: Quillére’s algorithm.

102

Our polyhedral scanner (called Bungle) is a reimplementation of CLooG [QRW00,
Bas04b, Bas04a] in Java. The R-Stream mapper originally depended on CLooG
for polyhedral scanning. However, we have discovered a few deficiencies in the
algorithm of CLooG, related to output code quality. The performance improve-
ments are a welcomed product of the reimplementation.

15.5 Performance improvements

Among the performance improvements are these changes to the Quillére algo-
rithm:21

• We used data structure sharing whenever possible. With garbage collec-
tion in Java, this is trivial to accomplish; there is no need to perform
reference counting as in CLooG.

• As in CLooG, we identify β-dimensions, i.e., dimensions in the domains
which are constants [BCG+03a]. β-dimensions can be sorted using integer
sort instead of polyhedra topological sort.

• Statements which have the same domains and adjacent schedules can
merge into a single “block.” The polyhedral scanner can treat these blocks
as a single statement.

• The separation algorithm has been tuned. Avoid difference, union and
intersection whenever possible. Use cheaper ⊆ tests to prune out the com-
mon cases. Figure 8 shows the pseudo code of our fine-tuned separation
algorithm.

• The polyhedral topological sorting algorithm has been sped up, using only
one call to the Chernivoka algorithm [LeV92] per polyhedra comparison
step, as opposed to six as described in [QRW00]. The Chernikova algo-
rithm [Che68] is the primitive operation for performing Minkowski de-
composition of polyhedra, and is the primitive on which all polyhedral set
operations are built.

• Faster preimage and image primitives are used for the common cases of
adding a new dimension to a set. These special cases can be computed
without calling the relatively expensive Chernikova algorithm.

Additionally, we are currently working on other optimizations to improve
the code generation speed even more:

• Perform aggressive node splitting after sorting at each level of the al-
gorithm based on partial domain equality. This technique described in
previous work by Vasilache [VBC06, Vas07] greatly reduces the number
of redundant polyhedral separations.

21Many of these changes are taken from CLooG.

103

Separate(P)
Q := {P1}; Qunion := {P1};
for Pi ∈ P2, . . . , Pn do

P in Qs := false; //Is Pi ⊆ Q?
Q′ := ∅;
for Qj ∈ Q do

P in Q := (Pi ⊆ Qj);
Q in P := (Qj ⊆ Pi);
// Process Pi ∩ Qj

if P in Q then P in Qs := true; PQ := Pi;
else if Q in P then PQ := Qj ;
else PQ := Pi ∩ Qj;
end if;
if PQ 6= ∅ then

Q′ := Q′ ∪ PQ (with stms. of Qj and Pi);
end if;
// Process Qj − Pj

if Q in P then
else if PQ 6= ∅ then

Q′ := Q′ ∪ Qj (with stms. of Qj);
else if Qj 6⊆ PQ then

Q′ := Q′ ∪ (Qj − Pi) (with stms. of Qj)
end if;

end for;
// Process Pi − ∪jQj

if not P in Qs and (not convex(Qunion) or not Pi ⊆ Qunion) then
Q′ := Q′ ∪ (Pi − Qunion) (with stms. of Pi);
if Pi − Qunion 6= ∅ then Qunion := Qunion ∪ Pi; end if;

end if;
Q := Q′;

end for;
return Q;

Figure 8: Improved separation algorithm.

104

• Perform polyhedral topological sorting by only lexicographically compar-
ing well-chosen vertices. This allows us to skip all Minkowski decomposi-
tion of the polyhedra.

Figure 2 shows the speedup of our polyhedral scanner over CLooG, running
a benchmark suite provided by the CLooG distribution.

Platform CLooG Bungle Speedup

Windows-XP/x86 108.66s 12.1s 9.0
Linux/x86 42.2s 9s 4.7

Linux/x86-64 25.67s 4.9s 5.2

Table 2: CLooG versus Bungle (64-bits).

15.6 Code quality improvements

As mentioned above, one of the main motivations for developing our polyhedral
scanner was that we find the output code quality of CLooG inadequate. Two
areas are particularly troublesome: Firstly, tiling transformations frequently
produces strided loops, which CLooG generates as guarded code. Secondly,
CLooG does not contain an adequate mechanisms to control code duplication.
Note that there is a constant tradeoff between code duplication and specializa-
tion.

To attack these problems, we have included the following set of code quality
improvements into Bungle:

• Perform less domain splitting/specialization.

• Perform constraints tightening to improve the bounds of the loop nests.

• Perform predicate hoisting and stride hoisting to improve the generation
of predicated and strided code.

• Provide a mechanism to control when specialization should be performed
(i.e., introduce code duplication), and when guards should be used (i.e.,
eliminate code duplication.)

We shall show how we implement these changes and how they improvement
the output code quality in the next sections.

We are also working towards integrating recent results that translate into
additional code quality improvements [VBC06, Vas07] such as:

• Taking advantage of the notion of schedule equivalence to perform Hermite
Normal Form simplification of the scheduling to drastically reduce the
amount of unnecessary modulo conditionals.

105

• Use unrolling to remove remaining modulo guards.

• Tightly integrate modulo conditionals with domain computations to re-
move dead code that is not found as such by subsequent low level opti-
mizations.

• Exploit new properties of schedule equivalence to avoid performing sepa-
rations in the Quilleré algorithm at certain strategic points.

15.6.1 Controlling domain splitting

To control excessive domain splitting (code duplication), we have disabled the
bottom-up recursion in the Bastoul [Bas04a] algorithm. This recursion step
intends to eliminate unnecessary control overhead in the generated loop. But
unfortunately, it tends to introduce extra code specialization.

For example, suppose we start with the following loop nests and apply a
fusion transformation to improve its spatial locality.

if (M >= 0) {
for (int i = 0; i <= N; i++) {

for (int j = 0; j <= M; j++) {
A[i][j] = f(C[-2 + i][1 + j]);

}
for (int j = 0; j <= M; j++) {

B[i][j] = g(A[i][1 + j], A[i][j], C[-1 + i][j]);

}
for (int j = 0; j <= M; j++) {

C[i][j] = h(B[i][j], A[i][2 + j], A[i][1 + j]);

}
}

}

One possible result after fusion is the following loop nests:

for (int i = 0; i <= N; i++) {
for (int j = -2; j <= M; j++) {

if (j <= M - 2) {
A[i][2 + j] = C[-2 + i][3 + j];

}
if (j >= 0) {

B[i][j] = A[i][1 + j] + A[i][j] + C[-1 + i][j];

C[i][j] = A[i][2 + j] + A[i][1 + j] + B[i][j];

}
}

}

106

However, the above loop nests are clearly inefficient, because of the presence
of predicates in the innermost loop. CLooG attempts to remove these predicates
by splitting domains in the separation step of the algorithm. The result is the
following:

if (M >= 2)

for (int i = 0; i <= N; i++) {
for (int j = -2; j <= -1; j++)

A[i][2 + j] = C[-2 + i][3 + j];

for (int j = 0; j <= M + -2; j++) {
A[i][2 + j] = C[-2 + i][3 + j];

B[i][j] = A[i][1 + j] + A[i][j] + C[-1 + i][j];

C[i][j] = A[i][2 + j] + A[i][1 + j] + B[i][j];

}
for (int j = M + -1; j <= M; j++) {

B[i][j] = A[i][1 + j] + A[i][j] + C[-1 + i][j];

C[i][j] = A[i][2 + j] + A[i][1 + j] + B[i][j];

}
}

if (M <= 1 && M >= 0)

for (int i = 0; i <= N; i++) {
for (int j = -2; j <= M + -2; j++)

A[i][2 + j] = C[-2 + i][3 + j];

for (int j = 0; j <= M; j++) {
B[i][j] = A[i][1 + j] + A[i][j] + C[-1 + i][j];

C[i][j] = A[i][2 + j] + A[i][1 + j] + B[i][j];

}
}

The bottom-up recursion in CLooG has removed unnecessary code in the special
of 0 ≤ M ≤ 1. However, it is accomplished by code duplication. In Bungle, we
defaulted to the original Quillére algorithm (which does not apply bottom-up
recursion). The following simpler output is generated:

if (M >= 0) {
for (int i = 0; i <= N; i++) {

for (int j = -2; j <= min(M + -2, -1); j++) {
A[i][2 + j] = C[-2 + i][3 + j];

}
for (int j = 0; j <= M + -2; j++) {

A[i][2 + j] = C[-2 + i][3 + j];

B[i][j] = A[i][1 + j] + A[i][j] + C[-1 + i][j];

C[i][j] = A[i][2 + j] + A[i][1 + j] + B[i][j];

}
for (int j = max(0, M + -1); j <= M; j++) {

B[i][j] = A[i][1 + j] + A[i][j] + C[-1 + i][j];

107

C[i][j] = A[i][2 + j] + A[i][1 + j] + B[i][j];

}
}

}

15.6.2 Constraints tightening

We have found that constraints tightening has a significant effect on the output
quality of polyhedral scanning after tiling transformations are applied. For
example,

for (int i = 0; i <= 8; i++)

for (int j = 0; j <= 8; j ++)

for (int k = 0; k <= 8; k ++)

for (int l = max(2*i, 0); l <= min(64, 2*i+63); l++)

for (int m = max(2*j, 0); m <= min(64, 2*j+63); m++)

for (int n = max(2*k, 0); n <= min(64, 2*k+63); n++)

S;

All of the min and max operations are redundant, and if left behind in the code,
will have drastic negative effect on LLC optimizations.

We have observed that by tightening the constraints, we can obtain the
following redundancy-free loops:

for (int i = 0; i <= 8; i++)

for (int j = 0; j <= 8; j ++)

for (int k = 0; k <= 8; k ++)

for (int l = 2*i; l <= 2*i+63; l++)

for (int m = 2*j; m <= 2*j+63; m++)

for (int n = 2*k; n <= 2*k+63; n++)

S;

Our constraints tightening heuristics is very simple: after every projection
operation in the Quillére algorithm, we tighten the constraints of the polyhedra
by performing two types of Gomory cuts:

• Given a constraints ax + b ≥ 0, we can replace it by a/gx + ⌊b⌋/g⌊≥⌋0,
where g is the gcd of the coefficients in a.

• We compute the minimum and maximum value of each dimension of a
polyhedron (if they exist) by performing a projection in each dimension,
and add these minimum and maximum as extra constraints.

108

15.6.3 Predicate and stride hoisting

Modulo equality predicates within a loop can often be transformed by hoist-
ing them and converting them into strided loops. For instance, consider the
following output generated by CLooG:

for (int i = 1; i <= min(N,6); i++) {
for (int j = 1; j <= min(N,(-(i) + 7)); j++) {

if ((((i + 1) & 1) == 0)) {
S1(i,j,((-1 + i) / 2),N);

S2(i,j,((-1 + i) / 2),N);

}
}
for (int j = (-(i) + 8); j <= N; j++) {

if ((((i + 1) & 1) == 0)) {
S1(i,j,((-1 + i) / 2),N);

}
}
for (int j = (N + 1); j <= (-(i) + 7); j++) {

if ((((i + 1) & 1) == 0)) {
S2(i,j,((-1 + i) / 2),N);

}
}

}

Unfortunately, the predicates within the innermost loops are serious hindrance
to performance.

Since all of the predicates are loop invariant, Bungle will actually hoist them
out of their respective loops and combine them into a single predicate:

for (int i = 1; i <= min(N,6); i++) {
if ((((i + 1) & 1) == 0)) {

for (int j = 1; j <= min(N,(-(i) + 7)); j++) {
S1(i,j,((-1 + i) / 2),N);

S2(i,j,((-1 + i) / 2),N);

}
for (int j = (-(i) + 8); j <= N; j++) {
S1(i,j,((-1 + i) / 2),N);

}
for (int j = (N + 1); j <= (-(i) + 7); j++) {
S2(i,j,((-1 + i) / 2),N);

}
}

}

Finally, the remaining predicate can be combined with the i-loop, by mod-
ifying the stride of the loop to 2. The final result is predicate free:

109

for (int i = 1; i <= min(N,6); i += 2) {
for (int j = 1; j <= min(N,(-(i) + 7)); j++) {

S1(i,j,((-1 + i) / 2),N);

S2(i,j,((-1 + i) / 2),N);

}
for (int j = (-(i) + 8); j <= N; j++) {

S1(i,j,((-1 + i) / 2),N);

}
for (int j = (N + 1); j <= (-(i) + 7); j++) {

S2(i,j,((-1 + i) / 2),N);

}
}

Note that in general, the hoisting and stride combination process is more
intricate for more general predicates. Consider the following sequence of trans-
formations:

for (int i = 0; i <= 30; i++) {
for (int j = 0; j <= 30; j++) {

if (((((i + (3 * j)) + 1) % 6) == 0)) {
S1(i,j,(((-1 + (-1 * i)) + (3 * j)) / 6));

}
}

}

for (int i = 0; i <= 30; i++) {
if (((i + 1) % 3) == 0) {

gap1 = (((-i+5)/3 & 1);

for (int j = gap1; j <= 30; j += 2) {
S1(i,j,(((-1 + (-1 * i)) + (3 * j)) / 6));

}
}

}

for (int i = 2; i <= 30; i += 2) {
gap1 = (((-i+5)/3 & 1);

for (int j = gap1; j <= 30; j += 2) {
S1(i,j,(((-1 + (-1 * i)) + (3 * j)) / 6));

}
}

General transformation rule in stride hoisting is as follows. Given a loop
nest matching the following template:

110

for (i = l; i <= h; i++)

if ((e + ai) % m) == 0)

S;

where pa + qm = gcd(a, m) = g, we can transform the loop nest into:

if (e % g == 0) {
gap = ((m − p(e + al))/g) rem (m/g);
for (i = l + gap; i <= h; i += m/g)

S;
}

15.6.4 Controlling code duplication

The final improvement to Bungle is the ability to tradeoff specialization and code
duplication. An example will illustrate the importance of this feature. Consider
the following loop nests generated by CLooG for a block matrix multiply kernel
using double buffering to overlap communication and computation.

for (i = 0; i <= 7; i++) {
dma get A, B, C

dma wait

swap pointers to A, B, and C

dma get A, B, C

for (j = 16 * P; j <= 16 * P + 15; j++)

for (k = 0; k <= 15; k++)

for (l = 16 * i; l <= 16 * i + 15; l++)

C[j-16*P][k] += + B[l-16*i][k] * A_l[j-16*P][l-16*i];

dma put C

for (j = 1; j <= 6; j++) {
dma wait

swap pointers to A, B, and C

dma get A, B, C

for (k = 16*P; k <= 16*P + 15; k++)

for (l = 16 * j; l <= 16 * j + 15; l++)

for (m = 16 * i; m <= 16 * i + 15; m++)

C[k-16*P][l-16*j] += B[m-16*i][l-16*j] *

A[k-16*P][m-16*i];

dma wait

dma put C

}
dma wait

swap pointers to A, B, and C

for (j = 16 * P; j <= 16*P + 15; j++)

for (k = 112; k <= 127; k++)

111

for (l = 16 * i; l <= 16 * i + 15; l++)

C[j-16*P][k-112] += B[l-16*i][k-112] * A[j-16*P][l-16*i];

dma wait

dma put C

dma wait

}

Note that the main loop kernel has been specialized 3 times and multiple copies
of DMA operations have been inserted. This code duplication behavior is fun-
damental to the Quillére algorithm, as it tries to remove unnecessary predicates
in the separation step of the algorithm. Uncontrolled specialization, however,
can blow up the size of the transformed loop substantially.

By removing specialization outside of the main computation kernel, Bungle
can produce the following simpler loop nest:

for (i = 0; i <= 7; i++) {
for (j = -1; j <= 8; j++) {
if (j <= 7 && j >= 0) {

dma wait

swap pointers to A, B, C

}
if (j <= 6) {

dma get A

dma get B

dma get C

}
if (j <= 7 && j >= 0)

for (k = 16*P; k <= 16*P + 15; k++)

for (l = 16*j; l <= 16*j + 15; l++)

for (m = 16*i; m <= 16*i + 15; m++)

C[k-16*P][l-16*j] += B[m-16*i][l-16*j] *

A[k-16*P][m-16*i];

if (j >= 1) dma wait

if (j <= 7 && j >= 0) dma send

}
}

This set of loop nests is vastly superior in terms of code size. Since the predi-
cates are only inserted outside of the innermost matrix matrix loop nests, their
performance penalty is negligible.

The heuristics to achieve this improved output is as follows:

• The polyhedral scanner takes as input a range of loop nest dimensions to
allow specialization for each input statement. Such ranges are identified in
the tiling phase of the mapper: dimensions which belong within a tile are
computationally intensive, and so specialization is allowed. Dimensions

112

which are outside of a tile (so called inter-tile dimensions) are not allowed
to be specialized.

• The Quillére algorithm is modified so that when it encounters statements
which are not allowed to be specialized, it generates the simpler non-
specialized result.

113

16 The R-Stream Compiler Infrastructure

Figure 9 shows the structure of the entire R-Stream 3.0 source-to-source com-
piler, together with the mapper component. The core of the compiler consists of
the front-end, the intermediate representation (IR) and scalar optimizer known
as Sprig, and the back-end for regenerating the optimized code in a source-level
format. The polyhedral mapper, and the components for translating between
the Sprig IR form and the polyhedral form (called “raising” and “lowering”) are
considered to be an extension of the compiler. Sections 17 and 18 will discuss
these transformations in more detail.

Front-end

Sprig IR
and optimizations

Target code generator

Raising

Polyhedral mapper

Lowering

��

��

55lllllllllllllllll
��

��

iiRRRRRRRRRRRRRRRR

Figure 9: The R-Stream infrastructure.

16.1 The Sprig IR

The Sprig IR is a graph-based static single assignment form (SSA) intermediate
representation inspired by the work of Click et al. [CP95], with some extensions
borrowed from the value dependence graph (VDG) [WCES94] for representing
state and memory. As in a traditional compiler, Sprig ignores many of the syn-
tactic artifacts of the source language and concentrates only on the semantics.
The Sprig IR is structured as a single unified fine-grained operator graph in
which most dataflow and data dependencies are represented explicitly. At the
lowest level, an operator denotes a primitive operation such as addition, sub-
traction, or a load and store from memory. Dependencies based on memory
are explicitly represented as extra edges in memory operators. Control flow
within a function or procedure is represented by a control flow graph (CFG)
embedded on top of the operator graph data structure. At the highest level,
procedural calls and returns are represented by call and return operators (APP
and RETURN) connected to function operator (called LAMBDAs). Because the en-
tire compilation unit forms a single unified graph, this makes Sprig very suitable
for interprocedural and full program analysis.

114

16.1.1 Heterogeneous compilation

Heterogeneous compilation imposes additional requirements to the design of the
Sprig IR. While a traditional compiler only has to manipulate one target ar-
chitecture at a time, the R-Stream compiler frequently has to manipulate and
combine target code in multiple architectures. For example, when producing a
mapping for the CELL platform, we have to produce mapped control code run-
ning on PowerPC and mapped kernels running on CELL’s Synergistic Processor
Units (SPUs).

Thanks to judicial use of the object oriented design paradigm, the R-Stream
compiler can manipulate multiple IR instances of different architectures at the
same time. To handle heterogeneous architectures, each IR instance can be
parameterized by a different architectural description object, which describes
the target machines’ parameters such as word size, address width, memory and
cache sizes, etc.

16.1.2 Source level type system

One distinguishing feature of the Sprig IR is that all operators are typed using
source level types (in this case types from the C language). This is a direct
requirement of the source-to-source nature of the compiler.

Since the C type system is largely ad hoc and irregular, a few accommo-
dations are needed to make it possible to work within a compiler intermediate
representation.

First, all type coercions and conversions are explicitly represented in the IR.
This means that unlike the C language in the source level, all type coercions
and type conversions are expanded and explicitly represented in the IR. For
example, the C fragment

void * p = ...

long long x = (long long) p;

may be represented internally as the following two operators:

x <- SX.64.32(long long, CAST(int, p))

Here CAST is a type cast operator and SX sign-extension operator and the purpose
of SX.64.32 is to sign-extend a 32-bit integer into a 64-bit integer long long.

Secondly, all optimizations in Sprig function in a type preserving manner.
Because all type conversions and coercions are explicitly represented, the in-
ternal type rules operate very similarly to that of the simply typed lambda
calculus, rather than the complex rules adopted by the C language. Thus the
extra maintenance required for typed transformation is minimal. As an extra
sanity check, the R-Stream compiler can also perform a full type check after
every optimization pass.

As a hedge for future extension to other source languages, the set of types and
type rules are also fully parametrizable in the Sprig IR, rather than hardwired
into the representation.

115

16.1.3 Source code regeneration

Another distinguishing feature of the Sprig IR infrastructure is the ability to re-
generate the internal representation in source code form. This is needed because
Sprig IR strips away all source level artifacts in the internal representation.

While this design is in contrast to many existing source-to-source program
transformation tools – which tend to retain the source syntax in their internal
representations – we believe it is the right one. By ignoring the source syntax
and only concentrate of the semantics of the input program, we obtain two main
advantages:

• Transformations and analyses are much easier to develop because they are
not sensitive to syntactic restrictions or irregularities of the underlying
language(s).

• Retargeting to another source and/or target language is easier, because
the compiler is not tied to one specific source or target language.

Of course there are other potential disadvantages of this approach. The
most important one is that the output code will tend not to resemble the input
source syntactically in any way. However, as we will show in Section 18, many
low level compilers (LLC) that accept R-Stream output require different idioms
to work properly. So the chosen idiom in which the source is presented may not
be what the LLC expects. Giving R-Stream the ability to customize the output
syntax to fit the target compilers is both a necessity and an advantage.

Section 18 will cover the source code regeneration process in more detail.

16.2 Scalar optimizations and analyses

The Sprig IR infrastructure contains an extensive list of SSA-based scalar op-
timizations, including conditional constant propagation [WZ91], global value
numbering and code motion [Cli95, CS95, Sim98], strength reduction [CSV01],
global reassociation [BC94], dead code elimination, and function inlining.

All these optimizations and analyses are used to clean up and simplify the
input code before mapping begins, and also to clean up and perform post-
mapping transformations on the mapped code.

116

17 Raising: IR to Polyhedral Form

Raising is the process of transforming loop nests in the form of the the Sprig
IR (see Section 16) into the internal polyhedral form (See Section 4) needed by
the mapper. Note that raising is trivial when restricted to an input represen-
tation that matches the semantics restriction of static affine control programs
exactly, i.e., do-loops with affine loop bounds and affine indexing expressions
on arrays. However, when performed on realistic programs and intermediate
representations, the process is more complicated.

First, there is a semantic mismatch between the polyhedral model and the
internal representation of a typical compiler. For example, while the polyhedral
model expects loop nests, a compiler is often given a control flow graph, and thus
loop detection is required to transform one to the other. Similarly, while the
polyhedral model expects arrays and array indexing, a compiler typically deals
with lower level address arithmetic, with all the difficulties (such as aliasing)
that entails.

Secondly, since the C language is a low level system programming language
and is insufficiently expressive, programmers are frequently forced to encode
many high level concepts — such as abstract data types, dynamically sized
multidimensional arrays, etc. — as more primitive C constructs. The difficulty
posed to the raising phase is that it has to perform “semantics raising” to recover
the original intention of the programmer by decoding such encodings. Of course,
the set of such possible idiomatic encodings is limitless and it is impossible for
the raising phase to perform a “mind-reading” of the programmer in all the
possible cases. Nevertheless, by examining sample applications in the target
DSP and high performance computing area, we have identified a collection of
common idioms that can be automatically decoded. Our raising algorithm has
incorporated some of these analyses.

Finally, the pure polyhedral model is overly restrictive, and if interpreted
strictly, will prohibit many existing loop nests from being handled by the map-
per. For example, data dependent branches, function calls and returns, etc. are
common “impure” constructs found in many program fragments. To be effec-
tive, the raising phase must be able to handle all these constructs gracefully.

17.1 Raising algorithm

The raising algorithm implemented in the R-Stream compiler contains the fol-
lowing subanalyses and transformations, each handling an aspect of the raising
problem. Currently, these are pointer-analysis; mappable region identification;
inlining; index, data and predicate identification; if-conversion; base address
and parameters detection; statement formation; recurrence analysis; and finally,
GDG building.

In the next sections we shall describe how all these components work together
to form the raising phase.

117

17.1.1 Pointer analysis

The first step of the raising process is to perform a whole program pointer
analysis to determine potential aliasing. This analysis computes a global ob-
ject graph, which summarizes all the potential points-to relationships in the
program. Currently, we use a flow-insensitive, context-insensitive, subset based
pointer analysis based on the research by Heintze and Tardieu [HT01, WL02].
Our variant of this analysis is also field-sensitive, i.e., can distinguish between
different members within a struct or union.

typedef struct {
int n;

float *A, *B, *C;

} obj;

void matmult(obj * p) {
int n = p->n;

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
p->C[i*n+j] = 0;

for (k = 0; k < n; k++)

p->C[i*n+j] += p->A[i*n+k]*p->B*[k*n+j];

}
}

void f() {
obj * o = (obj*)malloc(sizeof(obj));

o->n = 1024;

o->A = (float*)malloc(sizeof(float)*1024*1024);

o->B = (float*)malloc(sizeof(float)*1024*1024);

o->C = (float*)malloc(sizeof(float)*1024*1024);

...

matmult(o);

...

float * q = o->A;

...

}

Figure 10: Pointer analysis example

Figure 11 shows the result of applying this pointer analysis to the program
fragment in Figure 10. Dotted edges are interpreted to be inclusion edges in the
points-to relationship. For example, there is a dotted edge from p to o. Thus,
from the pointer p we can reach all the objects in which o may point-to. Solid
labeled edges are interpreted as member selection operations. Thus from the

118

o

p

q

malloc malloc malloc

ww

��

A

����������������

B

��

C

��??????????????

�� �� ��

Figure 11: Object summary graph

graph we know that p->A, p->B and p->C cannot alias because o->A, o->B and
o->C ultimately include distinct calls to malloc22. However q and o->A may
alias, because they may reach the same malloc object in the graph.

17.1.2 Mappable region identification

After pointer aliasing, we determine which regions in the entire application can
benefit from mapping. Currently, we defer this decision to the programmer,
who annotates mappable functions with the pragma #pragma rstream raise,
which identifies to the compiler that the annotated function may be raised. In
the future we expect this step will be automated by static and dynamic profiling
techniques.

To make the mappable region useful for subsequent transformation and anal-
ysis, we also perform an “outlining” transformation at this step, which has a
secondary effect of exposing all the free variables that occur within the region.
For example, given the following program fragment

#pragma rstream raise

void f() {

for (int i = 0; i < N; i++) {

A[i] = B[i] * C[i];

}

}

outlining transforms this into the following equivalent fragment:

#program rstream raise

void f() {

_f(A, B, C);

}

22We know that each malloc call returns a new object.

119

void _f(double *A, double *B, double *C, int N) {

for (int i = 0; i < N; i++) {

A[i] = B[i] * C[i];

}

}

The freely occurring variables A, B, C and N are now rendered into parameters
of the outlined function. These parameters are treated specially in the base
address and parameters detection phase described in Section 17.1.7.

17.1.3 Inlining

To expose more potential parallelism to the mapper, small routines called from
a mappable region may be inlined. Thus after mappable function identification,
we run an inlining phase to perform this scope enlargement transformation.
Currently, this phase depends on the pragma rstream inline inserted by the
programmer to identify inlining opportunities. The rules are as follows.

• Functions with #pragma rstream inline annotated are inlinable.

• Function calls with #pragma rstream inline pragma are also inlinable.

• However, recursive functions are not inlined.

Similar to the mappable region identification phase, we expect this profitability
computation to be automated in the future.

17.1.4 Index, data and predicate values classification

In the polyhedral model loop indices and data arrays are distinct entities. Since
this is not directly evident in the SSA-based IR, after inlining we run a simple
analysis to classify all SSA values that occur within a mappable region into
three categories:

index values that are used directly or indirectly in loop bounds and array
index computation,

data values that are used in arithmetic computation and loaded from and
stored to memory, and

predicate values that control non-loop branches.

This analysis can be implemented as multiple traversals of the SSA graph. For
example, to identify index values, we start from the addresses of all load and
store operators, and visit and mark all reverse reachable operators.

Note that the above categories are not mutually exclusive; a value may in fact
take the roles of all three. For example, consider the following source program
fragment:

120

for (i = 0; i < 100; i++) {

if (i % 3 == 0) {

A[i] = i;

}

}

The loop index i is used in array index computation, is stored inside an array
and is also part of a predicate computation.

17.1.5 If-conversion

The polyhedral model does not handle data dependence predicates in its purest
form. Since many existing programs contain data dependent predicates of some
form, some compromise is necessary. To this end we use the standard technique
of if-conversion [AKPW83], which transforms control dependences into data
dependences.

Our if-conversion algorithm is a modification of existing algorithms and can
work with arbitrary reducible flowgraphs. It is composed of these steps:

• Compute the control dependence graph (CDG) [FOW87] of the mapped
region.

• Perform loop detection and identify back-edges.

• Within each nested loop, sequentialize all basic blocks with by topolog-
ically sorting of the forward control flow graph, i.e., by ignoring all the
backedges.

• Convert each non-loop controlling predicate with into a predicate defining
statement.

• Attach to each basic block a predicate expression computed from the
forward control dependence graph, i.e., by ignoring all the back-edges.
Predicate expressions are represented internally in our implementation as
binary decision diagrams [Bry86], so boolean simplification is performed
automatically.

The output of this step is a predicated statement tree consisting of loop
nests and predicated “statements” that are at the granularity of basic blocks.

For example, suppose we are given the following program fragment:

void inc(double A[N][N]) {

int i, j;

for (i = 0; i < N-1; i++) {

if (A[i][i] > 0) { // S1

for (j = 0; j < N; j++) {

if (A[i][j] > 0) { // S2

121

A[i][j] += 1; // S3

} else {

A[i+1][j] -= 1; // S4

}

}

}

}

}

The if-conversion phase sinks all predicates into the innermost loops and
converts all statements into predicated form, resulting in the a predicated state-
ment tree that can be represented as the following pseudo code:

#pragma rstream map

void inc(double A[N][N]) {

int i, j;

for (i = 0; i < N-1; i++) {

p1 = A[i][i] > 0; // S1

for (j = 0; j < N; j++) {

p2 = A[i][j] > 0 if (p1); // S2

A[i][j] += 1 if (p1 && p2); // S3

A[i+1][j] -= 1 if (p1 && !p2); // S4

}

}

}

With this transformation, control dependencies on the data dependent predi-
cates in S1 and S2 are converted into data dependences on the predicate vari-
ables p1 and p2, and can then be treated as such in the mapper. Note that
our mapper’s dependence analysis is predicate-aware, and thus will ignore all
dependencies between statements S3 and S4 within the same iteration, since the
boolean expression p1 && p2 and p1 && !p2 cannot be satisfiable at the same
time.

17.1.6 Statement formation

The Sprig IR is structured as an operator graph where each operator is at the
granularity of individual arithmetic or memory operation. While it is possible
to map each operator into a node in the GDG, the resulting GDG is often too
fine-grained. On the other hand, treating each basic block as a single unit of-
ten errs in the opposite extreme, and the resulting GDG is too coarse-grained,
and may not contain enough exploitable parallelism. Thus to build “polyhe-
dral statements” that have the right granularity for mapping, we run a special
statement formation phase. This phase splits each basic block into multiple

122

polyhedral statements, each corresponding to a node in the GDG, using follow-
ing heuristics:

• For each basic block, we build a data dependence graph summarizing
all the dependencies involving non-index values. We ignore dependencies
involving index values because they can be recomputed from the loop
indices.

• We divide the basic blocks into partitions, such that all the partitions
can be executed in some linear order. Partitions are built by repeating
the follow process: we start from singleton nodes, and repeated merging
in true-dependence edges as long as the linear order restriction is not
violated.

The basic intuition is that only true dependence on non-index values require
data communication, and partitions with no or with only false dependences
can often be scheduled independently. Our heuristics thus seek to split basic
blocks into the largest partitions without data communication. The result of this
step is a modified predicated statement tree, consisting of loops and predicated
statements, where each statement is a group of operators in the original graph.

17.1.7 Base address and parameters detection

The purpose of base address and parameters detection step is to identify which
values are base addresses of variables and which values are system param-
eters, i.e., symbolic integer constants that can appear in indexing expressions
and loop bounds. These information are used subsequently in recurrence anal-
ysis.

Currently, we employ the following heuristics:

• Pointer formal parameters that appear in the outlined functions of map-
pable regions (see Section 17.1.2) are tentative assumed to be a base ad-
dress, and

• Integer formal parameters from the same functions are tentative assumed
to be integer parameters.

17.1.8 Recurrence analysis

The second to last step of the raising phase is a recurrence (or induction) anal-
ysis, which perform these tasks:

• Identifies all do-loops within the program.

• Assigns a pseudo loop counter to all do-loops. Each loop counter is im-
plicitly initialized to 0 at loop entry, and is incremented by one whenever
the loop is repeated.

• Detects and identifies all recurrences involving integer and pointers within
the program.

123

The effect of this phase is to reexpress an index value as a function of the
loop indices and system parameters, and to reexpress an address computation
a function of the loop indices, system parameters and special base addresses
computed in the base address detection phase.

For this purpose we utilize the algorithm of Pop et al. [PCS05], which allows
us to detect linear recurrences, and other forms of progressions.

For example, consider the following source program fragment consisting of
a single while loop.

void f1(int* A) {
int i = 1;

int j = 3;

int n = 123;

while (1) {
int t;

if (i >= n) break;

t = i + 7;

j = j + t;

A[j] = i;

i = i + 5;

}
}

In the internal SSA form, the program is:

void f1(int* A) {
int n = 123;

while (1) {
i1 = φ(1, i2);

j1 = φ(3, j2);

if (i1 >= n) break;

t = i1 + 7;

j2 = j1 + t;

A[j2] = i1;

i2 = i1 + 5;

}
}

Recurrences can be detected by examining cycles that involve φ nodes in loop
headers within in an SSA graph. In this particular example, we can extract two
cycles, one involving the i variable and one involving j:

i1 = φ(1, i1 + 5)

j1 = φ(3, j1 + i1 + 7)

124

Translating the cycles into mathematical terms, we obtain the following
sums:

i = 1 +

k−1
∑

p=0

5

j = 3 +

k−1
∑

p=0

7 + i

= 3 +

k−1
∑

p=0

7 + 1 +

k−1
∑

q=0

5

where k is a newly introduced normalized loop index.
Using Newton’s formula, we can collapse the two sums into the following

closed forms:

i = 1 + 5k

j = 3 +
11

2
k +

5

2
k2

From the closed form of i and the loop limit n, 123, we know the while-loop
is executed 25 times. Rewriting all loop indices in terms of a new 0-based loop
index k, we obtain the following normalized loop:

void f1(int* A) {
for (int k = 0; k < 25; k++) {

i = 1+5k;

j = 3+11/2*k+5/2*k*k

A[11+21/2*k+5/2*k*k] = i;

}
}

As stated, our algorithm also performs recurrence analysis on pointers and
pointer arithmetic expressions. The generalization of this from integer expres-
sions is immediate: each pointer expression closed form is an pointer recurrence
expression of the form

A[e1][. . .][en]

where A is a some recognized base-address (see Section 17.1.7) to an array
and e1, . . . , en are integer recurrence expressions. The analysis of recurrence
expressions e1, . . . , en are the same as outlined before.

By performing recurrence analysis on pointer expressions, we can automat-
ically normalize programs written in C’s pointer-centric style into an array ex-
pression required by the polyhedral model. Thus the programmer is not con-
strained by the needs of our mapper to rewrite his programs in another way.

For example, consider the following program fragment taken from [FO01]:

125

#define X 256

#define Y 256

#define Z 256

int A[X*Y];

int B[X*Y];

int C[X*Y];

void f() {
int * p_a = &A[0];

int * p_b = &B[0];

int * p_c = &C[0];

int k, i, f;

for (k = 0; k < Z; k++) {
p_a = &A[0];

for (i = 0; i < X; i++) {
p_b = &B[k*Y];

*p_c = *p_a++ * *p_b++;

for (f = 0; f < Y-2; f++) {
*p_c += *p_a++ * *p_b++;

}
*p_c++ += *p_a++ * *p_b++;

}
}

}

This program fragment uses three scanning pointers p_a,p_b and p_c within
the loops to traverse the arrays A and B and C.

By performing pointer recurrence analysis, we can normalize the above loop
nests into the following array-centric form:

for (i = 0; i <= 255; i++) {
for (j = 0; j <= 255; j++) {
C[256*i+j] = A[256*i] * B[256*j];

for (int k = 0; k <= 253; k++) {
C[256*i+j] += A[1+256*j+k] * B[1+256*i+k];

}
}

}

17.1.9 GDG building

After all the previous raising steps, the final GDG building step traverses the
predicated statement tree and translates all the gathered information into the
GDG form. This phase converts all loops bounds into constraints, all indexing
expressions into access functions, all predicate computation expressions and
predicated statements into nodes of the GDG.

126

17.2 Future extensions

We shall conclude this section by describing some of the extensions we intend
to add to the raising phase in the near future to make it handle a wider class
of programs.

17.2.1 Automatic region selection and inlining

One current deficiency of the raising phase is that the R-Stream compiler cannot
automatically determine which are the proper regions in the application to map.
Currently, programmers have to insert #pragmas to direct this selection process.
We intend to alleviate this lack with a combination of automatic and user-
directed techniques:

• Perform a static program profile analysis [BL93, WL94] to determine the
“hot spots” of an application. Then using the hot spots as a guide to
select the mapping regions.

• Perform inlining of frequently used loop nests within the mapping regions
to enlarge the scope of optimization.

• Allow user directed mapping region selection and inlining hints.

17.2.2 Abstract data types via struct and unions arguments

Proper programming practice states that one should encapsulate related data
into abstract data types. Since the C language lacks such abstraction facilities,
a common substitute is to package up related data into structs or unions, and
implement functions that operate on such packaged data.

For example, Figure 10 shows such an example where three n × n matrices
are packaged up into a single struct to be passed to a matrix multiply routine.
Note that such practice is prevalent in libraries such as [SJHM06], or systems
such as Matlab.

To analyze such programs, we intend to use the result of our pointer analysis
to untangle the web of points-to relationships between C structs and pointers.
In particular, in the above example, we have to infer the pointer expressions
p->A and p->B and p->C are to be treated as base references to three separate
arrays.23

17.2.3 Heap memory management and array delinearization

Related to the above issue of abstract data type is the use of heap allocation. For
example, one possible way to encode a 3-dimensional dynamically sized array
with dimensions m, n and o is to encode it as a 1-D array allocated from the
heap.

23Note that this is not as trivial as it sounds, because in the C language pointer expressions
are prevalent.

127

int m = ...

int n = ...

int o = ...

double * A = (double*)malloc(m*n*o*sizeof(double));

...

free(A);

A typical use of such “flattened” arrays is

int m = ...

int n = ...

int o = ...

double * A = (double*)malloc(m*n*o*sizeof(double));

double * p = A;

for (i = 0; i < m; i++, p += n*o)

for (j = 0; j < n; j++, p += o)

for (k = 0; k < o; k++)

*p++ = ...

By performing pointer recurrence analysis, we can derive the following loop
nests with array indexing rather than pointer scanning.

int m = ...

int n = ...

int o = ...

double * A = (double*)malloc(m*n*o*sizeof(double));

for (i = 0; i < m; i++)

for (j = 0; j < n; j++)

for (k = 0; k < o; k++)

A[i*n*o+j*o+k] = ...

Unfortunately, our polyhedral mapper cannot handle the non-affine indexing
expressions i*n*o+j*o+k directly. Fortunately, in this case we have a simple
cure. The trick is to recognize that the original intention of the programmer is
to encode a 3-D array as a flattened 1-D structure. Thus by delinearizing array
A, we can obtain the following 3-D array indexing loop.

for (i = 0; i < m; i++)

for (j = 0; j < n; j++)

for (k = 0; k < o; k++)

A[i][j][k] = ...

The above process requires some amount of pattern matching on indexing
expressions.

128

17.2.4 Geometric recurrences

Geometric recurrences of the template show below often appear in the imple-
mentations of Fast Fourier Transforms. Unfortunately, the polyhedral model
cannot directly deal with such non-linear iteration spaces.

for (i = 1; i <= N; i = 2*i) {
S;

}

One possible solution is the following. First, we have to detect the pres-
ence of such recurrences within the code. The algorithm [PCS05] used in our
implementation can be extended to deal with such instances. Secondly, after
geometric recurrences are identified, we can rewrite the loop into a predicated
form, such as the following:

for (i = 1; i <= N; i++) {
if (i is a power of 2) {

S;

}
}

The predicate is still non-linear and thus has to be dealt with using approxi-
mations within the mapper. The iteration space, however, is properly enlarged
and is of a form analyzable by our mapper.

17.2.5 Modulo recurrences

Another type of non-linear recurrences that happen quite often in existing ap-
plications are modulo recurrences and array indexing expressions that involve
modulo arithmetic. Such recurrences appear in some Discrete Fourier Transform
implementations and code that manipulates bounded circular buffers.

For example, the following program fragment involves a modulo computation
on k.

k = 0;

for (i = 0; i < N; i++) {
S;

k++;

if (k >= M) k = 0;

}

It can be transformed into the following more apparent form using the same
recurrence detection algorithm:

129

for (i = 0; i < N; i++) {
k = i % M;

S;

}

Modulo indexing expressions in arrays may be treated in various ways. For
example, if an array is used as a circular buffer, it may be array expanded
into unbounded buffer to remove dependencies, and array contracted back to a
circular buffer after optimizations.

130

18 Lowering: From Polyhedral Form to Target
Code

This section describes the process in which R-Stream generates the target output.
This process consists of the following subtasks:

• Convert the internal polyhedral representation to a conventional loop rep-
resentation via polyhedral scanning (see Section 15 for details.)

• Convert abstract operations such as DMA initiation, thread creation, syn-
chronization etc. into concrete operations supported by the target API.
These are discussed in Sections 19, 20 and 21.

• Optimize the generated code further by running other scalar optimizations
and transformations in the Sprig IR.

• Finally, perform syntax reconstruction to convert the internal IR back to
a source level syntactic form.

18.1 Syntax reconstruction

Syntax reconstruction is the process of transforming the internal IR (see Sec-
tion 16) into the surface syntax of the target language. Due to space limitations,
we shall discuss the problem of syntax recovery for the C language only, although
the process is analogous for other imperative languages.

The need for syntax reconstruction is driven by a few common causes:

1. We would like the output to be idiomatic, so that it can aid debugging and
user comprehension. For example, early versions of R-Stream generated
output in a form that resembles portable assembly language. While the
output can be compiled and executed by a low level compiler, it cannot
be easily understood by a human being — even an R-Stream developer. It
also makes it impossible for a developer to fine tune the output code.

2. Secondly, we have discovered that many low level compilers fail to optimize
a program when the output deviates from some common idioms. For
example, an early version of IBM XLC compiler fails to SIMDize the
following code fragment

k = 0;

while (k < 256) {
A[i][j] += B[i][k] * C[k][j];

k++;

}

while the semantically identical

131

for (k = 0; k < 256; k++) {
A[i][j] += B[i][k] * C[k][j];

}

is properly SIMDized. This results in 2 orders of magnitude in perfor-
mance difference on the CELL architecture.

18.2 Algorithm

The first step of syntax reconstruction is to recover the high level control
structure of the program. We use an algorithm derived from the work of Ci-
fuentes [Cif93, Cif94, Cif96]. The algorithm first performs a structural decom-
position of the program control flow graph by identifying dominators, postdom-
inators and loop structures.

i=0;
t1=B+j;

t2=i<N;

t2

t3=i+j;
t4=t3>P

t4

t5=i+j;
t6=*t1;
t7=t5+t6;
A[i]=t7;
i=i+1

i = 0;

t1 = B+j;

while(1) {
t2=i<N;

if (! t2) break;

t3=i+j;

t4=t3>P;

if (! t4) break;

t5=i+j;

t6=*t1;

t7=t5+t6;

A[i]=t7;

i=i+1;

}

��

��

y��

��

y
��

@A

GF
//

ED

n

��

ED

n

��

Figure 12: Control structure reconstruction.

Figure 12 illustrates the process of transforming a sample flowgraph into a
C program with while loop. Note that because predicates in a while-loop must
be C expressions rather than arbitrary C statements, the exit conditions of the
loop are controlled by a sequence of if statements and break.

132

The next step of the syntax reconstruction process is to resynthesize larger
expressions from primitive operators or simple statements containing only one
operator. This process first classifies the potential side-effects of each subexpres-
sions and whether their resulting values are shared. Side-effect free expressions
and expressions whose results are used only once may be combined with other
expressions without restrictions. Side-effecting expressions may also be com-
bined with other expressions, if the side-effect can be combined with others
without changing the semantics. Expressions with shared results are usually
not combined with others to preserve the sharing. Occasionally, this rule can
be violated if we can determine the expression is inexpensive to recompute and
code duplication can make the target code more readable.

i = 0;

t1 = B+j;

while(1) {
t2=i<N;

if (! t2) break;

t3=i+j;

t4=t3>P;

if (! t4) break;

t5=i+j;

t6=*t1;

t7=t5+t6;

A[i]=t7;

i=i+1;

}

i = 0;

while(1) {
if (i >= N || i+j <= P) break;

A[i]=i+j+B[j];

i=i+1;

}

Figure 13: Expression building.

Figure 13 shows the result of applying our expression reconstruction algo-
rithm to the running example. Note that the complex exit conditions can be
combined into a short-circuited || expression. Also, the loop invariant expres-
sion B+j is sunk into the body of the loop and combined with the dereference
operator * into B[j], since it makes the output easier to read.24

After expression reconstruction, we apply a few common idiom matching
rules to further simplify the output program. This process is ad hoc in nature
and highly dependent on the target language, and in some instances, on the
selection of the target compiler. Figure 3 lists some of the common idioms that
we match against in our current syntax reconstruction module.

Figure 14 shows the result of applying the idiom matching and rewriting

24All normal C compilers can hoist the address computation out of the loop without expen-
sive analysis if it is desired, so this transformation should not affect the performance of the
target code.

133

Pattern Target

i=i+1; i++;

i=i+n; i+=n;
while (1) { if (p) break; S } while (!p) { S }
i = e; while (p) { S; i++; } for (i = e; p; i++) { S; }

Table 3: Idiom matching.

i = 0;

while(1) {
if (i >= N || i+j <= P) break;

A[i]=i+j+B[j];

i=i+1;

}

for (i = 0; i < N && i+j > P; i++) {
A[i]=i+j+B[j];

}

Figure 14: Idiom matching example.

rules on our running example. The result of the transformation is an idiomatic
C for-loop.

134

19 CELL Backend

The CELL Architecture is a high performance power-efficient heterogeneous chip
multiprocessor developed by IBM, Sony and Toshiba as a target for graphics,
cryptography, and scientific workloads. A CELL die contains one PowerPC
Unit (PPU) together with eight 128-bit single-instruction multiple-data (SIMD)
Synergistic Processor Units (SPU). Each SIMD can process 4 32-bit integers,
single-precision floating point, or 2 double-precision float point operations in a
cycle. Integer and single-precision operations are fully pipelined.

19.1 Local memory and DMA

The CELL is a distributed memory, cache-free architecture. The SPUs and
PPU are connected by a high speed bus capable of peak 128 bytes/per cycle
DMA bandwidth. The local memory of each SPU contains 256KB of (combined
data/code) memory, with a 16 bytes/per cycle load store bandwidth, and up
to 128 byte instruction prefetch per cycle. Load and stores to this memory are
quadword aligned only.

One DMA controller (called the ”Memory Flow Controller” (MFC)) is at-
tached to each SPU, each containing two command queues. One queue is ded-
icated to the attaching SPU and the other is a “proxy” queue for receiving
commands issued from the PPU. DMA operations can be initiated from the
SPUs or the PPU. However, SPU initiated DMA operations are preferred, since
each SPU can enqueue up to 16 requests at a time, while the PPU can only
enqueue up to 8.

Each DMA request can be composed of

• one single transfer element, or

• a DMA list of up to 2K transfer elements.

Each transfer element describes the low order (32-bit) starting address and
the byte count. Each element describe transfer of

• 1, 2, 4, 8, 16 bytes, with each element naturally aligned. and the source
and target address must have the same 4 lowest bit, or

• multiples of 16 bytes at 16 byte alignment, up to 16KB. So, for example,
it is impossible to transfer data of size 18 bytes in one DMA element.

• When transferring 128 bytes or more, the data should be aligned at 128
bytes for performance.

• The preferred transfer size is 128 bytes.

19.2 CELL target API

The R-Stream compiler currently maps to the following low level API.

135

Spawning executing kernels on SPUs are accomplished with the routines
CELL_mapped_begin and CELL_mapped_end.

CELL_mapped_region_t CELL_mapped_begin(

int region_id,

int num_spus,

int num_barriers,

spe_program_handle_t * proc,

const void * context,

size_t context_size);

void CELL_mapped_end(CELL_mapped_region_t *);

The routine CELL_mapped_begin spawns a number of threads each running
an identical copy of SPU program determined by the handle. This complemen-
tary routine CELL_mapped_end blocks until all spawned threads have completed.
These functions can only be called from the PPU. Internally, these functions are
implemented in terms of POSIX pthreads.

A typical example use of these routines are as follows:

typedef union {
struct

int id; /* thread id */

double * A, * B, * C;

s;

int padding[16];

} context_t;

static context_t contexts[NUM_SPUS] __attribute__((align(16)));

for (i = 0; i < NUM_SPUS; i++) {
contexts[i].s.id = id;

contexts[i].s.A = A;

contexts[i].s.B = B;

contexts[i].s.C = C;

...

}

CELL_mapped_region_t * R =

CELL_mapped_begin(NUM_SPUS, 0, my_kernel,

contexts, sizeof(context_t));

CELL_mapped_end(R);

19.3 DMA primitives

Our API only supports asynchronous DMA primitives. Currently, all DMA
primitives must also be initiated from the SPU side. The CELL_dma_get prim-

136

itive retrieves data into the local memory, while the CELL_dma_put call sends
data from the local memory. The DMA calls simulate strided access when
necessary by either generating a CELL DMA list dynamically, or by splitting
one DMA operation into many, or by doing both. These routines also hide all
alignment and size requirements violations.

void CELL_dma_get(

const volatile * srcAddr,

volatile * dstAddr,

size_t bytes,

ssize_t srcStride,

ssize_t dstStride,

size_t count,

int tag);

void CELL_dma_put(

const volatile * srcAddr,

volatile * dstAddr,

size_t bytes,

ssize_t srcStride,

ssize_t dstStride,

size_t count,

int tag);

void CELL_dma_wait(int tag);

All CELL_dma_get and CELL_dma_put operations are associated with a tag
between 0 to 15. The CELL_dma_wait routine blocks until all the outstanding
DMA operations with the given tag have completed.

19.4 Memory primitives

The CELL_sync call can only be executed in the PPU side. It is a memory
barrier.

void CELL_sync();

This function should be called after CELL_rpc before accessing any data that
may be altered by the kernel.

19.5 Synchronization primitives

The only synchronization primitive currently implemented as a barrier synchro-
nization call:

137

void CELL_barrier(int id);

Each barrier call is identified by a unique identifier. The semantics of a barrier
is to block the calling thread until all group members have called the same
function. After all group members have entered the call, all the members are
released.

Barrier objects are reserved by the runtime system in the call to CELL_mapped_begin.

19.6 Cell mapping example

In this section we shall demonstrate the CELL API using a blocked matrix
multiply as an example. The input to the R-Stream compiler is a 1024 × 1024
matrix multiply:

float A[1024][1024];

float B[1024][1024];

float C[1024][1024];

for (i = 0; i < 1024; i++) {
for (j = 0; j < 1024; j++) {
for (k = 0; k < 1024; k++) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

The output from the R-Stream compiler consists of a program to be run
on the SPU and one on the PPU. On the SPUs side, the function __kernel

is generated. Within it, the 1024 × 1024 matrix multiply partitioned into 32
64×64 pipelined matrix multiplies, divided evenly between 8 SPUs. The special
formal parameter PROC0 refers to the current SPU number. Within __kernel,
R-Stream allocates 2 buffers for each array A, B, and C. Each of these local arrays
are of size 64 × 64 only.

void __kernel(float (A*)[1024],

float (B*)[1024],

float (C*)[1024],

int PROC0) {
float A_l_buf1[64][64], A_1_buf2[64][64];

float B_l_buf1[64][64], B_l_buf2[64][64];

float C_l_buf1[64][64], C_l_buf2[64][64];

float (* A_l_v1)[64] = A_l_buf1;

float (* A_l_v2)[64] = A_l_buf2;

float (* B_l_v1)[64] = B_l_buf1;

float (* B_l_v2)[64] = B_l_buf2;

float (* C_l_v1)[64] = C_l_buf1;

138

float (* C_l_v2)[64] = C_l_buf2;

for (i = 0; i <= 1; i++) {
for (j = 0; j <= 15; j++) {

if (i == 0) {
initialization code

}
Pipelined 64x64 matrix multiply

}
}

}

If we expand out the code fragment titled “pipelined 64x64 matrix multiply,”
the following inner pipelined loop nest appears. The loop nest executes as a 18
stage pipeline, with one prologue stage and one epilogue stage. Within the
pipeline, data from the next iteration are prefetched via DMA into the reserved
buffers, while the innermost 64 × 64 matrix multiply kernel is working on the
current set of buffers.

// 16 stages + 1 prologue and 1 epilogue
for (k = -1; k <= 16; k++) {
if (k <= 15 && k >= 0) {
// Block until the prefetched data is ready
CELL_dma_wait(0);

swap C_l_v1 and C_l_v2,

A_l_v1 and A_l_v2,

B_l_v1 and B_l_v2;

}
if (k <= 14) {
for (l = 0; l <= 63; l++) // Prefetch A, B and C

CELL_dma_get(&B[64*j+l][64+64*k],

&B_l_v2[l][0], 64*4,4,4,1,0);

for (l = 0; l <= 63; l++)

CELL_dma_get(&A[512*i+l+64*PROC0][64*j],

&A_l_v2[l][0], 64*4,4,4,1,0);

for (l = 0; l <= 63; l++)

CELL_dma_get(&C[512*i+l+64*PROC0][64+64*k],

&C_l_v2[l][0],64*4,4,4,1,0);

}
if (k <= 15 && k >= 0) { // 64x64 matrix multiply kernel
for (l = 0; l <= 63; l++)

for (m = 0; m <= 63; m++)

for (n = 0; n <= 63; n++)

C_l_v1[l][m] += B_l_v1[n][m] * A_l_v1[l][n];

}
// Block until the previous write completes

139

if (k >= 1) CELL_dma_wait(1);

if (k <= 15 && k >= 0) { // Initiate write back to C
for (l = 0; l <= 63; l++)

CELL_dma_put(&C_l_v1[l][0],

&C[512*i+l+64*PROC0][64*k], 64*4,4,4,1,1);

}
}

R-Stream lowering phase emits the following glue code to interface between
the SPU code and the PPU code. First, a context structure definition is emitted.
The context contains all the addresses of the matrices which have to be passed
to the SPUs from the PPU.

union __context {
struct {

float (*A)[1024];

float (*B)[1024];

float (*C)[1024];

} context;

double padding[2];

}

On the PPU side, we use the following code fragment to spawn 8 SPUs
threads each running the above SPU program.

union __context context;

extern spe_program_handle matmult1024_spu;

struct CELL_mapped_region* region;

context.context.A = A;

context.context.B = B;

context.context.C = C;

region = CELL_mapped_begin(0, 8, 0,

&matmult1024_spu, &context, sizeof(context));

CELL_mapped_end(region);

On the SPU side, the main program generated. The program calls the func-
tion CELL_spu_init to decode the parameter argp and retrieve the current pro-
cessor number PROC0. Then it reads the initial message from the PPU containing
the context, then dispatch immediately to execute the __kernel function.

int main(uint64_t id, uint64_t argp)

{
union __context c;

uint64_t t1;

int PROC0;

140

CELL_spu_init(id,argp,&PROC0);

CELL_dma_get((void *)_t1, &c,

sizeof(c), 0, 0, 1, 0);

CELL_dma_wait(0);

__kernel(c.context.A,

c.context.B,

c.context.C,

PROC0);

return 0;

}

19.6.1 Manual SIMDization

The XLC compiler fails to SIMDize the following inner loop nests within the
function __kernel, leading to abysmal performance.

for (l = 0; l <= 63; l++)

for (m = 0; m <= 63; m++)

for (n = 0; n <= 63; n++)

C_l_v1[l][m] += B_l_v1[n][m] * A_l_v1[l][n];

In order to gauge how R-Stream performs under more favorable conditions,
the innermost 64×64 matrix multiply loop nests have been manually SIMDized.
The result of the manual transformation is shown below:

const vector unsigned char pat0 =

VEC_LITERAL(vector unsigned char,

0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3);

const vector unsigned char pat1 =

VEC_LITERAL(vector unsigned char,

4,5,6,7,4,5,6,7,4,5,6,7,4,5,6,7);

const vector unsigned char pat2 =

VEC_LITERAL(vector unsigned char,

8,9,10,11,8,9,10,11,8,9,10,11,8,9,10,11);

const vector unsigned char pat3 =

VEC_LITERAL(vector unsigned char,

12,13,14,15,12,13,14,15,12,13,14,15,12,13,14,15);

const vector float (* restrict A_v)[64/4] =

(const vector float (* restrict) [64/4]) A;

const vector float (* restrict B_v)[64/4] =

(const vector float (* restrict) [64/4]) B;

vector float (* restrict C_v)[64/4] =

(vector float (* restrict)[64/4]) C;

for (int i = 0; i < 64; i++) {
for (int j = 0; j < 64/4; j += 4) {

141

// Do C[i][4*j ... 4*j+15] in parallel

// Unroll and jam

vector float C_ij0 = C_v[i][j+0];

vector float C_ij1 = C_v[i][j+1];

vector float C_ij2 = C_v[i][j+2];

vector float C_ij3 = C_v[i][j+3];

for (int k = 0; k < 64/4; k++) {
vector float t = A_v[i][k];

vector float a0 = spu_shuffle(t, t, pat0);

vector float a1 = spu_shuffle(t, t, pat1);

vector float a2 = spu_shuffle(t, t, pat2);

vector float a3 = spu_shuffle(t, t, pat3);

C_ij0 = spu_madd(a0, B_v[4*k+0][j+0], C_ij0);

C_ij0 = spu_madd(a1, B_v[4*k+1][j+0], C_ij0);

C_ij0 = spu_madd(a2, B_v[4*k+2][j+0], C_ij0);

C_ij0 = spu_madd(a3, B_v[4*k+3][j+0], C_ij0);

... // etc

C_ij3 = spu_madd(a0, B_v[4*k+0][j+3], C_ij3);

C_ij3 = spu_madd(a1, B_v[4*k+1][j+3], C_ij3);

C_ij3 = spu_madd(a2, B_v[4*k+2][j+3], C_ij3);

C_ij3 = spu_madd(a3, B_v[4*k+3][j+3], C_ij3);

}
C_v[i][j+0] = C_ij0;

C_v[i][j+1] = C_ij1;

C_v[i][j+2] = C_ij2;

C_v[i][j+3] = C_ij3;

}
}

Trials SIMDized Pipelined Time GFlops/SPU/s

64 compiler n 14.6s 1.46
64 compiler y 13.9s 1.53
64 manual n 2.273s 9.38
64 manual y 1.658s 12.87

Table 4: Performance of matrix multiply on PS3.

Table 4 shows the performance of the manually mapped matrix multiply
routines running on a PlayStation 325 As a comparison, we have also shown the
performance of compiler SIMDized code and mappings with double buffering

25The PS3 contains only 6 programmer accessible SPUs instead of 8.

142

disabled. The result shows that with manual SIMDization and double buffer-
ing, we can obtain one half of the theoretical peak performance.26 The gap is
most likely to be caused by remaining compiler inefficiencies in optimizing the
manually SIMDized code.

26Theoretical peak performance is 25.6 GFlops.

143

20 TRIPS Backend

The TRIPS [BKM04, SNG+06] backend in the R-Stream compiler is very similar
to the CELL backend described in Section 19. The main differences are due to
differences in the CELL and TRIPS architectures and the runtime systems.

• On the TRIPS system, processor tile 0 serves as the master processor and
executes the sequential program. When a parallelized mapped region is
encountered, processors 1-3 are also activated, and processor 0 switches
role from a master processor to a “remote” processor. After the execution
of the mapped region is completed, processor 0 switches its role again as
the master processor and continues executing the unmapped part of the
application program.

• The R-Stream compiler has to produce special code to allocate local mem-
ory for processor tiles on the “stream register file,” a dedicated area for
fast local accesses of memory.

• The current TRIPS runtime system requires all data which have to be
memory mapped onto a global shared memory segment. The R-Stream

compiler identifies variables used in such a manner and converts them
into offsets into the shared memory segment.

20.1 TRIPS target API

The TRIPS target API consists of the following set of system calls. This set of
system calls is built on top of the TRIPS mailbox library, TRIPS DMA library
and the TRIPS shared memory (mmap) system calls. These system calls have
very similar semantics as those described in Section 19.2.

We use the calls TRIPS_region_begin and TRIPS_region_end to spawn a
set of parallelized kernels.

TRIPS_mapped_region_t * TRIPS_region_begin(

int region_id,

int num_processors,

int num_barriers,

void (*kernel)(int proc_id, void * argp),

const void * context,

size_t context_size);

void TRIPS_region_end(TRIPS_mapped_region_t *);

DMA operations are accomplished via the calls to TRIPS_dma_get, TRIPS_dma_put
and TRIPS_dma_wait. Similar to the CELL versions of these calls, we allow mul-
tiple DMA operations to be enqueued and identified by a unique integer tag.
The operation TRIPS_dma_waitwaits until all previously issued operations have
completed.

144

void TRIPS_dma_get(

const volatile * srcAddr,

volatile * dstAddr,

size_t bytes,

ssize_t srcStride,

ssize_t dstStride,

size_t count,

int tag);

void TRIPS_dma_put(

const volatile * srcAddr,

volatile * dstAddr,

size_t bytes,

ssize_t srcStride,

ssize_t dstStride,

size_t count,

int tag);

void TRIPS_dma_wait(int tag);

To allocate local memory and global memory (on a shared memory segment)
we use the following system calls.

void * TRIPS_get_shared_memory(size_t offset);

void * TRIPS_get_local_memory(size_t offset);

The call TRIPS_get_local_memory(o) obtains the virtual address to off-
set o of the stream register file of the current processor. Similarly, the call
TRIPS_get_shared_memory(o) obtains the virtual address to offset o of a global
shared memory segment. Currently, DMA accessible data from the main mem-
ory must be allocated onto this segment.

20.2 Mapping example

We will now show how our favorite matrix multiply loop nests can be mapped
onto the TRIPS API. For example, suppose we start with the following matrix
multiply fragment.

double A[128][128];

double B[128][128];

double C[128][128];

...

for (int i = 0; i <= 127; i++) {
for (int j = 0; j <= 127; j++) {

145

C[i][j] = 0;

for (int k = 0; k <= 127; k++) {
C[i][j] = C[i][j] + A[i][k] * B[k][j];

}
}

}
...

The mapping strategy we will adopt is to take the entire k-loop as a kernel
to be executed automatically and distribute the kernels onto 4 processors. Note
that this is not meant to be an efficient mapping. For efficiency, we may want to
perform iteration space tiling on the loop nests to improve locality and decrease
the amount of communication. But doing so will complicate this example and
detract from the subsequent exposition.

After parallelization, each processor will execute a SPMD loop that looks
like the following:

double A[128][128];

double B[128][128];

double C[128][128];

void kernel(int proc_id, ...) {
// Control here

for (int i = proc_id; i <= 127; i+=4) {
for (int j = 0; j <= 127; j++) {

// Kernel here.

C[i][j] = 0;

for (int k = 0; k <= 127; k++) {
C[i][j] = C[i][j] + A[i][k] * B[k][j];

}
}

}
}

The main thread executes the kernel by spawning 4 threads running on 4
processors via the call:

int main() {
...

TRIPS_mapped_end(TRIPS_mapped_begin(0, 4, 0, kernel, ...));

...

}

Of course, the previous mapping assumes we have shared memory available.
We can make the communication explicit by inserting DMA operations around
the kernel (k-loop). We obtain:

146

// global arrays

double C[128][128];

double A[128][128];

double B[128][128];

void kernel(int proc_id, ...) {
// local arrays

double C_loc;

double A_loc[128];

double B_loc[128];

for (int i = proc_id; i <= 127; i+= 4) {
for (int j = 0; j <= 127; j++) {

TRIPS_dma_get(&A[i][0], &A_loc[0], 1024, 8, 8, 1, 0);

TRIPS_dma_get(&B[0][j], &B_loc[0], 8, 1024, 8, 128, 0);

TRIPS_dma_wait(0);

C_loc = 0;

for (int k = 0; k <= 127; k++) {
C_loc = C_loc + A_loc[k] * B_loc[k];

}
TRIPS_dma_put(&C_loc, &C[i][j], 8, 8, 8, 1, 1);

TRIPS_dma_wait(1);

}
}

}

The initial context of each kernel function running on the slave processors
must be transferred from the master processor. We do this by packaging all
the needed data in a context structure and pass a pointer to this structure to
the slave processor. The first thing that the kernel function does is transfer the
data from the remote copy of context into a local context variable (via DMA)
so that it can be quickly accessed:27

typedef struct {
double (*A)[128];

double (*B)[128];

double (*C)[128];

} context_t;

void kernel(int proc_id, void * arg) {
// global arrays

double (*C)[128];

double (*A)[128];

27Alternatively, we can also use directly access the remote context structure because shared
memory is available on the TRIPS architecture.

147

double (*B)[128];

context_t context;

// Transfer the context over

TRIPS_dma_get(arg, &context, sizeof(context), 0, 0, 1, 0);

TRIPS_dma_wait(0);

A = context.A;

B = context.B;

C = context.C;

// Rest of the kernel

}

The setup code on the master processor becomes:

context_t context;

context.A = A;

context.B = B;

context.C = C;

TRIPS_mapped_begin(0, 4, 0, kernel, &context, sizeof(context));

For efficiency, we also want to hide the latency of communication by software
pipelining the DMA and computation code.

First, we split each local variable into two buffers, and allocate a pointer for
each buffer.

double A_loc_buf1[128];

double A_loc_buf2[128];

double B_loc_buf1[128];

double B_loc_buf2[128];

double C_loc_buf1;

double C_loc_buf2;

double* A_loc_ptr1;

double* A_loc_ptr2;

double* B_loc_ptr1;

double* B_loc_ptr2;

double* C_loc_ptr1;

double* C_loc_ptr2;

A_loc_ptr1 = A_loc_buf1;

A_loc_ptr2 = A_loc_buf2;

148

C_loc_ptr1 = &C_loc_buf1;

C_loc_ptr2 = &C_loc_buf2;

B_loc_ptr1 = B_loc_buf1;

B_loc_ptr2 = B_loc_buf2;

Next, a macro is generated to swap the buffer pointers:

#define TRIPS_swap() {
double* __A_loc_tmp;

__A_loc_tmp = A_loc_ptr1;

A_loc_ptr1 = A_loc_ptr2;

A_loc_ptr2 = __A_loc_tmp;

double* __C_loc_tmp;

__C_loc_tmp = C_loc_ptr1;

C_loc_ptr1 = C_loc_ptr2;

C_loc_ptr2 = __C_loc_tmp;

double* __B_loc_tmp;

__B_loc_tmp = B_loc_ptr1;

B_loc_ptr1 = B_loc_ptr2;

B_loc_ptr2 = __B_loc_tmp;

}

The kernel code can then be pipelined by performing loop shifting on the
DMA operations. The resulting code prefetches the data needed for the next
j-iteration while operating on the current one. Two DMA tags are used to
distinguish between the two groups of DMA operations. Tag 0 is for read and
tag 1 is for write.

for (int i = proc_id; i <= 127; i += 4) {
// prologue

TRIPS_dma_get(&A[i][0], &A_loc_ptr2[0], 1024, 8, 8, 1, 0);

TRIPS_dma_get(&B[0][0], &B_loc_ptr2[0], 8, 1024, 8, 128, 0);

TRIPS_dma_wait(0);

TRIPS_swap();

TRIPS_dma_get(&A[i][0], &A_loc_ptr2[0], 1024, 8, 8, 1, 0);

TRIPS_dma_get(&B[0][1], &B_loc_ptr2[0], 8, 1024, 8, 128, 0);

*(C_loc_ptr1) = 0;

for (int j = 0; j <= 127; j++) {
*(C_loc_ptr1) = *(C_loc_ptr1) + A_loc_ptr1[j] * B_loc_ptr1[j];

}
TRIPS_dma_put(C_loc_ptr1, &C[i][0], 8, 8, 8, 1, 1);

// steady state

for (int j = 1; j <= 126; j++) {
TRIPS_dma_wait(0); // wait for previous get to complete

TRIPS_swap();

// prefetch

TRIPS_dma_get(&A[i][0], &A_loc_ptr2[0], 1024, 8, 8, 1, 0);

149

TRIPS_dma_get(&B[0][1 + j], &B_loc_ptr2[0], 8, 1024, 8, 128, 0);

*(C_loc_ptr1) = 0;

for (int k = 0; k <= 127; k++) {
*(C_loc_ptr1) = *(C_loc_ptr1) + A_loc_ptr1[k]*B_loc_ptr1[k];

}
TRIPS_dma_wait(1); // wait for previous put to complete

TRIPS_dma_put(C_loc_ptr1, &C[i][j], 8, 8, 8, 1, 1);

}
// epilogue

TRIPS_dma_wait(0);

TRIPS_swap();

*(C_loc_ptr1) = 0;

for (int j = 0; j <= 127; j++) {
*(C_loc_ptr1) = *(C_loc_ptr1) + A_loc_ptr1[j] * B_loc_ptr1[j];

}
TRIPS_dma_wait(1);

TRIPS_dma_put(C_loc_ptr1, &C[i][127], 8, 8, 8, 1, 1);

TRIPS_dma_wait(1);

}
}

The previous transformations allocate local arrays onto the local stack of
the slave processors. On TRIPS, it is preferred to map local arrays onto the
stream register file to speed up accesses. This can be accomplished by replacing
the previous buffer pointer allocation code with the following:

A_loc_ptr1 = TRIPS_get_local_memory(... offset for A1 ...);

A_loc_ptr2 = TRIPS_get_local_memory(... offset for A2 ...);

B_loc_ptr1 = TRIPS_get_local_memory(... offset for B1 ...);

B_loc_ptr2 = TRIPS_get_local_memory(... offset for B2 ...);

C_loc_ptr1 = TRIPS_get_local_memory(... offset for C1 ...);

C_loc_ptr2 = TRIPS_get_local_memory(... offset for C2 ...);

Finally, we must map all global data onto a shared memory segment to make
them accessible to DMA. This is accomplished by replacing the initialization
code running on the master processor with the following:

typedef struct {
double (*A)[128];

double (*B)[128];

double (*C)[128];

} context_t;

typedef struct {
double A[128][128];

double B[128][128];

double C[128][128];

150

context_t context;

} shared_t;

int main(...) {
// Global arrays A, B and C and context are allocated

// in the shared segment

shared_t shared = (shared_t *) TRIPS_get_shared_memory(0);

double (*A)[128] = shared->A;

double (*B)[128] = shared->B;

double (*C)[128] = shared->C;

...

// Create a context object

shared->context.A = A;

shared->context.B = B;

shared->context.C = C;

// Run the kernel in parallel

TRIPS_mapped_end(

TRIPS_mapped_begin(0, 4, 0, kernel, &shared->context,

sizeof(shared->context)));

...

}

151

21 SMP Backend

The R-Stream compiler also contains a backend that targets Symmetric Multi-
Processors (SMP). We currently use it for testing purposes, as no communica-
tions need to be generated for this target. Hence, testing the mapper on this
target allows us to test everything but the communication generation and the
DMA optimization components.

The SMP backend targets an API similar to the ones described in Sections 19
and 20. Among the callable routines in this API are these three:

// Create a new mapped region and returns its handle.

SMP_mapped_region_t * SMP_mapped_begin(

int region_id,

int num_threads,

int num_barriers,

void (*kernel)(void * arg),

const void * context,

size_t context_size);

// End a mapped region.

void SMP_mapped_end(SMP_mapped_region_t * region);

// Execute a global barrier.

void SMP_barrier(int id);

The call to SMP_barrier also acts as a memory barrier. The runtime system
is currently implemented on top of POSIX threads, but can be easily ported to
another set of threading primitives.

152

22 R-Stream and Polymorphous Computer Ar-
chitectures

This report has focused on the R-Stream compiler, rather than the DARPA
PCA program and the Morphware Forum effort within that program. Still, some
brief background discussion of the relationship between PCA and R-Stream –
how R-Stream serves the objectives of the PCA program – is important.

22.1 PCA program objectives

The objective of the PCA program was to develop programmable architectures
which achieved high degrees of computational efficiency in SWEPT, that is
Size, Weight Energy, Power, Time, for embedded applications of interest to
the US Department of Defense. Reference applications for PCA include radar
codes such as Ground Moving Target Indicator (GMTI), which has very high
computational demands and which must run in demanding airborne (or space)
applications where SWEPT efficiency is key. Since generally, size and weight
of a computational device are largely determined by the power dissipation, we
have focused on throughput (OPerations per Second, OP/S, or FLoating-point
OPerations per Second , FLOP/S, the T of SWEPT) per unit of power dis-
sipation, as the key performance metric (FLOPS/W). We call this metric the
computational efficiency.

The greatest degree of computational efficiency is generally achieved with
a customized chip design, an Application Specific Integrated Circuit (ASIC).
An ASIC achieves high degrees of computational efficiency by being a physical
embodiment of the operations and dataflow of the application on silicon. This
physical embodiment allows for several optimizations, such as placing producers
near consumers of data physically to reduce communication costs, and using
data formats and sizes tuned to minimize switching costs. A limitation of ASICs,
however, is that they are inflexible - they perform one application, and only that
application. They have a slow development time, are expansive to fabricate, and
small changes, as for instance bug fixes, are difficult to make. As a consequence,
they are expensive and of arguable productivity.

The challenge of the PCA program was to develop computational technolo-
gies - chips, software - that could deliver performance approaching that of an
ASIC, for the application classes of interest yet in a device that would still be
programmable.

A further challenge in the PCA program was to provide chips that were
morphable, that is, which could provide such efficiency over a broad class of
applications. A dimension of this morphability would be to have the chip morph
dynamically, that is, in the face of changing resources, mission objectives, or
algorithm characteristics. One could envision, for example, resources changing
with the loss or failure or computational units, or mission objective changing to
favor reduced latency for a result, trading that for the precision of the result.
Application characteristics might change, using the example of a radar/tracker

153

system, where the radar front end consists of relatively static control flow dense
matrix calculations and Fourier transforms (which demands one organization
or morph of the system), and the tracker back end consists of computation
with a data driven control flow, as in a multiple hypothesis tracker. The PCA
program worked on developing techniques to allow the architectures to morph
to reoptimize performance in response to such changes.

22.2 PCA hardware strategy

The PCA program funded (in the implementation phases) four architectures for
implementation: TRIPS [BKM04, SNG+06], Smart Memories [MPJ+00], RAW
[TKM+02], and Monarch [RCCT90]. While each architecture had numerous
innovations, certain common architectural features were present in all of the
architectures:

• Parallelism, particularly at a coarse grain, e.g., multiple processors on
the chip. The chips also provided instruction level parallelism to varying
degrees.

• Distributed local memories; this in contrast to shared coherent caches, or
large on-chip memories shared by all processors.

• Explicitly managed communication, in the form of DMA operations.

• Explicit synchronization among the programming elements.

More innovative features can be found in specifig PCA architectures. For in-
stance, TRIPS’s functional units expose high degrees of instruction level par-
allelism, Monarch provides a very efficient Field Programmable Computational
Array (FPCA), RAW provides facilities such as configuring the separate pro-
cessors into synchronous register coupled aggregates, and Smart Memories can
reconfigure memories from being explicitly managed to being caches or transla-
tion buffers.

However, the above common architectural features provide, to a large degree,
the basis for the computational efficiency of the chips. This is because these
common features have a basis in the silicon, which is the common implemen-
tation material for the chips. Fine grained, distributed memories provide more
bandwidth than centralized memories, because they provide more perimeter per
unit of storage than centralized memories. Keeping computational units local
to those memories reduces communication costs. Making those memories be
“just memories” rather than caches, reduces the amount of energy dissipated
for “chatter” traffic such as the unused part of cache lines, conflict misses, or
the unnecessary write backs of data that is no longer live with respect to the
algorithm. Using bulk communications allows for more efficient streaming of
the communications around, onto and off of the chip, preserving precious wire
and pin bandwidth for only the data that is needed for the computation.

To some extent, those principles have been known and used already, as ex-
emplified by the presence of those features in common digital signal processing

154

chips, and have been for some time. Ignoring the other features of PCA chips
that distinguish them, PCA architectures are still distinguished from the com-
mon DSP chips in the degree and scale, reaching over ten times (and envisioned,
hundreds or thousands) their typical parallelism and granularity. PCA archi-
tectures respond, in a way, to the urgency from the recent transition where
on-chip communication cost dominates computation cost, which has led to the
end of the era where performance increases come from clock rate increases and
architectural complexity.

It is also worth mentioning that as the PCA program has been finishing,
commercial chips have emerged with similar properties. Notably, the Tilera
chips are a commercialization of the RAW technology. The IBM/Sony/Toshiba
CELL chip embodies similar principles, driven by the requirements of its target
market of console gaming for high performance at very low power and cost.
The Intel Terascale research chip provides very simple accelerators, 80 of them
on a chip, each with a very small local memory. These successes validate the
vision of the DARPA PCA program, and also serve as a transition and business
opportunity for R-Stream, e.g., as CELL penetrates the High Performance Em-
bedded Computing (HPEC) market for DoD computing applications, R-Stream

can compile the applications.
These principles are the same as those that enable ASIC to have such good

performance, but they provide programmability that ASIC’s lack, by distribut-
ing control and programming through the chip. The degree of performance that
can be achieved, the peak performance, is determined largely by the granularity.
Finer grained hardware, lots of distributed small memories and functional units,
has a higher peak performance than the equivalent silicon processor organized
as a coarse grained architecture.

The challenge that PCA architectures (and their relatives, recent commer-
cial chips) present, is in their programming. The potential of these chips is
achieved only when the application that is running on them has a choreography
of data and computation in space (over the surface of the chip, or through the
system) and time that is efficient. Finding this choreography is difficult; it is
parallel programming with the added responsibilities of fine grained resource
management.

22.3 PCA software strategy

Significant effort in the PCA program went into developing the Morphware soft-
ware architecture. The Morphware software architecture consisted of High-Level
Compiler (HLC) and a Low Level Compiler (LLC). The abstraction between
the HLC and LLC consisted of various virtual machines, including: Streaming
Virtual Machines (SVM), Threaded Virtual Machine (TVM), and Hardware
Abstraction Layer (HAL). The distinction between SVM and TVM reflects the
anticipated division between code for signal processing (the static control pro-
grams, the radar) and for “data processing” (e.g., the dynamic control programs,
the tracker). Abstractions, languages, were designed for describing an architec-
ture: the machine model. Programming languages for the architectures were

155

investigated, e.g., stream programming languages. Different kinds and means
of morphing were classified.

22.3.1 Need for definition of “mapping”

In parallel with developing the software architecture for Morphware and the var-
ious software standards, R-Stream versions 1.0 and 2.0 were being implemented
by Reservoir. Our responsibilities included trying to keep track of and con-
tributing to the various standard proposals, architecture developments, and ap-
plications implementation. As we (Reservoir) focused on implementation of the
standards, we were deferring the formalization of what, exactly, “mapping” was.
This deferral diminished the effectiveness of the development of the Morphware
software standards. In retrospect, the need to prioritize mapping dawned on
(some of) us only slowly; now it is quite apparent how central the formalisms of
mapping are. For example, to decide what should go into the machine model,
one should understand what kind of information the mapper needs to reshape
code and optimize it for the machine. With our deferral of of the formalisms of
mapping, we ended up including features in the machine model language that
are irrelevant to mapping, for a variety of reasons, such as: the meanings of
those features were informal, or the information was something we could not
(at least, with known compiler technology) incorporate into a mapping algo-
rithm. Furthermore, in some cases, features for expressing information that a
mapper would actually need, were missing in the machine model.

A similar situation occurred with the various virtual machines, where the
meanings and computational models implied were not clear; how exactly to
implement their semantics was unclear, etc. The meanings of the virtual ma-
chines also got snagged as the execution models were mixed up by their language
bindings.

The situation also occurred with the various streaming languages. For ex-
ample, Brook [Buc03] proposed language features with little insight into what
was needed by a mapper: what could or could not be inferred or decided by
an automatic mapping procedure; or what language features outright thwarted
any attempt at automated mapping. This was aggravated by the desire to ren-
der some of the streaming languages (e.g., Brook) as improvements to C; the
improvements were buffeted by the language bindings, with the meaning of the
new features relative to the existing C language often unclear.

Consequently, as development proceeded with R-Stream 2.0, we found it
increasingly difficult to work on bona fide mapping innovation, as more and
more of our development resources were consumed trying to navigate a stormy
sea of the evolving standards (which Reservoir contributed to churning). The
positive feedback in this loop: lack of a mapper making it difficult to define solid
standards, and the fluidity of standards making it difficult to design a mapper,
reached a breaking point.

R-Stream 3.0 represents the outcome of our strategic decision (made with
significant help from our DARPA program manager) to pull back from the
standards to work on well-formalized bona fide mapping. This mapping would

156

be explicitly stated, as a well-defined mathematical optimization problem, in
terms of well-described algorithm descriptions at the input, to well-defined (and
simple!) execution models at the output. With those optimizations explicitly
stated, we could implement (and refine) them and they would have (at least
somewhat) well understood degrees of generality.

With a mapper defined in R-Stream 3.0, we are now in a position to support
answering questions about the Morphware APIs, with authority. For exam-
ple, any machine model feature that is proposed, can be evaluated in terms
of whether or how it can enter into the mapping algorithms. Machine model
attributes are with respect to a particular mapping algorithm. Similarly, a lan-
guage feature in a “streaming programming language” could be evaluated in
terms of whether that feature is needed by the mapping algorithm. Many fea-
tures of the proposed streaming languages in PCA actually end up providing
information that might be otherwise inferred by a more powerful dataflow anal-
ysis. Other features interfere with the analysis, or create “early bindings” that
create more work for the mapping algorithm to undo.

22.3.2 Power and limitations of polyhedral compilers

The power of the polyhedral model, as an advance over previous approaches to
high level optimization, comes from its ability to model and address a greater
breadth of input program forms. When we refer to “classic” high level op-
timizations, we refer to optimizations that work on essentially syntactic (Ab-
stract Syntax Tree, (AST)) representation of the program, over limited scope
and types of syntax, performing incremental changes. For example, classic loop
transformations are typically limited to work on single loops, or on perfect loop
nests. The polyhedral form has provisions for representations of parametric im-
perfect loop nests. Estimates are that this encompasses the majority of certain
computing benchmarks, e.g. SPECFP [Cor] and Perfect Club [BCK+89].

The power of the polyhedral model for representing high level optimization
has been recognized for some time; the original papers describing the model
date to the early 90’s. However, using the polyhedral model was until recently
considered impractical for several reasons, mainly the difficulty of lowering from
the polyhedral form back into executable code. This barrier has been removed
by the development of effective polyhedral scanning techniques, including those
developed and implemented in R-Stream.

Another challenge of the polyhedral model is in the computational complex-
ity of the underlying mapping stages. Generally, the computational complexity
of the stages is NP-hard or worse. A barrier to the utilization of the techniques
was that existing algorithms could only map kernels of code that are 10’s of
lines in length. The innovations of R-Stream extend that to the 1000’s of lines.
While that is still small compared to the size of a large application, it is large
enough to capture interesting kernels. In most programs, the dynamic profile
of the run shows that most of the cycles are in few of the lines of the program.
Still, extending the size of kernels that can be mapped is a key forward research
objective.

157

Another limitation pertains to controlling the optimizations. We have ob-
served the situation where the amount of parallelism exposed by the mapping
algorithms is so great, that the chance of finding good mappings, accounting for
other concerns, is low. Tuning is needed so that the parallelization and mapping
stages can “land” on good mappings more easily.

There will be more time in 2008 for us to develop a more detailed discussion
of the strengths and limitations of the polyhedral model and the mapper. This
will be provided in the XTRIPS final report for R-Stream, at the end of 2008.

22.3.3 Need for a uniform abstraction, phase fusion

From the start of our participation in the project, we recognized the importance
of the fine grained hardware targets on our mapping progress, and this caused us
to land on the polyhedral model as the representation of choice within R-Stream.

At a conceptual level, fine-grained, detailed management of hardware creates
a challenge for automatic mapping, for compiling. This is because compilers are
typically organized as a sequence of phases that transform or lower an algorithm
to the target hardware. Each phase typically addresses some aspect of the
hardware (e.g., register allocation) while leaving other aspects (e.g., the schedule
of instructions) for a later phase. In principle, the ordering of the phase is
arbitrary. In practice, the ordering of phases has high impact on the performance
of the resulting code. This has been explored in the context of register allocation
and instruction scheduling where it is possible to do one before the other. What
is interesting about these ordering tradeoffs is that as the target architecture
becomes more constrained, neither ordering is good, and one wants to try to do
both phases together - which is in principle feasible, though it is hard to design
a compiler to do so. In the running example, with a constrained register set,
one should combine register allocation with instruction scheduling into a single
phase.

Thus, with our high level mapper, we wanted to try to find a way to fuse
phases, to be able have our mapper make fine-grained hardware tradeoffs. What
the polyhedral model offers for this is a unified abstraction that represents the
various optimizations of code. This creates the potential for fusing phases via the
unified abstraction. While the current R-Stream 3.0 mapper has several phases,
this reflects the complexity of the mapping problem. Several of the phases in R-

Stream already represent unifications of steps that would otherwise be separate
in a classic optimizer, e.g., the classic steps of loop interchange, skewing, reversal
and others are embedded in the affine partitioning and parallelization step.

Furthermore, as we wrap up the PCA part of R-Stream’s development, we
recognize that there are some new ways enabled for improving the mapping of
code, e.g., ways to fuse parallelization and scheduling.

22.3.4 Power efficiency

We have not modeled power efficiency as an objective within our mapping algo-
rithms. Rather, our mapper’s objective is to maximize throughput. The power

158

efficiency becomes implicit in the mapping due to the fact that the PCA archi-
tectures are intrinsically efficient. We are aware of some compiler research to
optimize power explicitly, e.g., through controls provided in the API to lower
clock frequency and power supply voltage for sections of code that are not time-
critical. The architectures in the PCA program do not provide these hooks, but
such objectives should be relatively easy to introduce into the polyhedral form
mapping algorithms.

22.3.5 Dynamic Morphing

We believe that the mapping algorithms that we have developed in R-Stream pro-
vide insight into the way to address dynamic morphing. All along, the definition
of the term “morphing” and morph dogged the participants in the Morphware
program. Is “morph” a noun or a verb? When should the system morph, and
how? The question is difficult because the attachment to the term “morph”
entails finding a definition that suits it. A much better situation would be if
there were some specific threshold that distinguishes one sort of programming
or reconfiguration from another, where one would be labelled a morph and
another would not. What is the difference between morphing and just being re-
programmed? Automatically doing both seem to be just facets of automatically
doing mapping.

So, ultimately, the only way that questions about dynamic morphing can be
answered is by specifying an algorithm. But by what principle could such an al-
gorithm be developed? It has been our contention that a necessary preliminary
step for talking about dynamic morphing is having a static mapping algorithm.
The static mapping algorithm provides at least a baseline for statements about
the relative performance of the online, dynamic mapping algorithm. Potentially,
the static algorithm itself could form the basis of the dynamic mapping algo-
rithm. We do not think that one can make much progress on dynamic morphing
without static mapping technology.

In one regard, there is still more work to do in terms of versatility in morphs.
That is, the ability to handle varied algorithm computational models, or varied
execution models for the hardware. The R-Stream polyhedral abstraction, while
highly suitable for static control programs, is not suitable (to the extent we can
see) for programs with heavy data dependent control flow, e.g., multithreading
programs. While some degree of approximation can allow some forms of data
dependent control flow, e.g., conditionals to be rendered in the polyhedral form,
more general renderings would be different.

As this report demonstrates, we are just at the threshold of achieving prac-
tical static mapping capability, via the polyhedral model. Static mapping is
not easy, but should become so, soon. This technology should enable any new
research efforts on dynamic mapping to have a much greater impact.

159

22.4 Transitions

As mentioned at the beginning of this report, R-Stream is available in source
form to U.S. Government Departments under the Limited Rights arrangement
for the DARPA contract, for Government purposes. We have delivered source
distributions to AFRL, and will endeavor to provide updated source distribu-
tions, binary distributions for particular platforms, as well as support to the U.S.
Government, upon request. We are interested in ports to new architectures and
application domains.

We have developed a prototype license agreement for providing R-Stream to
universities for performing academic research, and are initiating discussions with
some universities. The benefit of universities working from this commercially
supported source are that the polyhedral mapper is currently significantly more
sophisticated than other such projects in the field (open source or closed), be-
cause it is providing fully automated transformations fully within the polyhedral
representation, as well as developer interfaces for studying and improving the
mapping. Also, R-Stream provides a robust scalar intermediate representation
maintaining strict types, yet allowing faithful representation of C, and signifi-
cantly powerful facilities for source idiom reconstruction. R-Stream also provide
more robust, scalable, and powerful library features for manipulating the math-
ematical abstractions of the polyhedral model, than those that are currently
available in the open source community.

Academic use of R-Stream offers a well-engineered, well-maintained basis on
which to experiment, addressing quality issues inherent to the high transientness
and heterogeneous programming skills of the workforce typically used in the
academy. Compilers are simply too large for university research groups to stand
up from scratch and maintain. Even multi-institution compiler infrastructure
collaborations do not provide the needed maintenance, coherent design, solid
mathematical foundations, and quality needed for a compiler to have long term
impact. The presence of a profitable and profit-motivated supplier for R-Stream

will allow university research groups to bypass the recapitulation and duplication
of standing up their own technology, to work on a sound foundation, to focus
on problems that are at the state of the art, with a transition path to mission
and commercial use.

Finally, we have developed a plan for commercial transition developing
“ports” of R-Stream for specific targets, or providing source licenses. We have
identified more than 40 customer prospects for such commercialization activi-
ties, to begin in Summer 2008.

R-Stream has transitioned into several follow on research and development
projects with the US Government. Some of these follow on the course set by
the PCA program, mapping high performance computing applications to novel
architectures. In DARPA Phase II SBIR W31P4Q-07-C-0144, Reservoir is en-
hancing R-Stream to produce computational code for FPGA Low-Level Com-
pilers as computational accelerators. In Missile Defense Agency (MDA) Phase
II SBIR W9113M-07-C-0072, we are extending the mapper with additional ca-
pabilities for mapping Ballistic Missile Defense (BMD) imaging applications.

160

We have also been using R-Stream as a base for developing additional soft-
ware programming tools relevant to DOD. In Office of the Secretary of Defense
(OSD) Phase I SBIR FA8650-07-M-8129, we showed how to perform software
obfuscation transformations using the compiler, at both the infrastructure and
the polyhedral level. In OSD Phase I SBIR W911QX-06-C-0099, we developed
the capability to emit models for use in verification of software properties. In
Navy Phase I SBIR N00039-08-C-0049, we are developing capabilities for inter-
face checking for software APIs required by waveforms used in the Joint Tactical
Radio System (JTRS).

22.5 Summary

The polyhedral mapping technology, as implemented in R-Stream, provides a
technical foundation - precisely stated, implemented, feasible mathematical al-
gorithms for mapping to a new class of efficient processor architectures - on
which to soundly refine and transition the technologies developed in PCA.

161

References

[AI91] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In

Proceedings of the 3rd ACM SIGPLAN Symposium on Principles

& Practice of Parallel Programming, pages 39–50, Williamsburg,

VA, April 1991.

[AK02] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern

Architectures. Morgan Kaufmann, 2002.

[AKPW83] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion

of control dependence to data dependence. In 10th ACM Sym-

posium on Principles of Programming Languages, pages 177–189,

1983.

[AMP00a] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Tiling

imperfectly-nested loop nests. In Supercomputing ’00: Proceedings

of the 2000 ACM/IEEE conference on Supercomputing (CDROM),

pages 60–90. IEEE Computer Society, 2000.

[AMP00b] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Tiling

imperfectly-nested loop nests. In Supercomputing ’00: Proceedings

of the 2000 ACM/IEEE conference on Supercomputing (CDROM)

[AMP00a], pages 60–90.

[Bas03] C. Bastoul. Efficient code generation for automatic parallelization

and optimization. In ISPDC’03 IEEE International Symposium on

Parallel and Distributed Computing, pages 23–30, Ljubjana, octo-

ber 2003.

[Bas04a] C. Bastoul. Code generation in the polyhedral model is easier than

you think. In PACT’13 IEEE International Conference on Parallel

162

Architecture and Compilation Techniques, to appear, Juan-les-Pins,

september 2004.

[Bas04b] C. Bastoul. Generating Loops for Scanning Polyhedra: CLooG

User’s Guide, April 2004.

[BBK+07] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy,

J. Ramanujam, A. Rountev, and P. Sadayappan. Affine trans-

formation for communication minimal parallelization and locality

optimization of arbitrarily-nested loop sequences. Technical Report

OSU-CISRC-5/07-TR43, The Ohio State University, May 2007.

[BC94] Preston Briggs and Keith D. Cooper. Effective partial redundancy

elimination. In SIGPLAN Conference on Programming Language

Design and Implementation, pages 159–170, 1994.

[BCC98] Denis Barthou, Albert Cohen, and Jean-Francois Collard. Maxi-

mal static expansion. In Symposium on Principles of Programming

Languages, pages 98–106, 1998.

[BCG+03a] C. Bastoul, A. Cohen, A. Girbal, S. Sharma, and O. Temam.

Putting polyhedral loop transformations to work. In LCPC’16

International Workshop on Languages and Compilers for Parallel

Computers, LNCS 2958, pages 209–225, College Station, october

2003.

[BCG+03b] C. Bastoul, A. Cohen, A. Girbal, S. Sharma, and O. Temam.

Putting polyhedral loop transformations to work. Technical Re-

port 4902, INRIA Rocquencourt, 2003.

[BCK+89] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer,

R. Roloff, A. Sameh, E. Clementi, S. Chin, D. Scheider, G.Fox,

163

P. Messina, D. Walker, C. Hsiung, J. Schwarzmeier, K. Lue,

S. Orszag, F. Seidl, O. Johnson, R. Goodrum, and J. Martin. The

PERFECT club benchmarks: Effective performance evaluation of

supercomputers. The International Journal of Supercomputer Ap-

plications, 3(3):5–40, 1989.

[BDRR94] P. Boulet, A. Darte, T. Risset, and Y. Robert. (pen-)ultimate

tiling ? In Integration, The VLSI Journal, volume 17, pages 33–51.

Elsevier Science Publishers B. V., 1994.

[Ber07] Michel Berkelaar. Lp solve reference guide 5.5, 2007.

[BKM04] D. Burger, S.W. Keckler, and K.S. McKinley. Scaling to the end of

silicon with edge architectures. IEEE Computer, 37(7):44–55, July

2004.

[BL93] T. Ball and J. Larus. Branch prediction for free. In Proceedings

of the ACM SIGPLAN ‘93 Conference on Programming Language

Design and Implementation, June 1993.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function

manipulation. IEEE Transactions on Computers, 35(8):677–691,

1986.

[Buc03] Ian Buck. Brook specification v0.2, October 2003.

[BW94] A. Bik and H. Wijshoff. Implementation of fourier-motzkin elimi-

nation, 1994.

[CBF95] Jean-Francois Collard, Denis Barthou, and Paul Feautrier. Fuzzy

array dataflow analysis. In Proc. 5th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP’95,

pages 92–101, Santa Barbara, California, 1995.

164

[CF93] Jean-Francois Collard and Paul Feautrier. Automatic generation

of data parallel code. In Henk Sips, editor, Proc. 4th Workshop on

Compilers for Parallel Computers, T.U. Delft, 1993.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solu-

tions of a linear programming problem. U.S.S.R. Computational

Mathematics and Mathematical Physics, 8(6):282–293, 1968.

[Cif93] C. Cifuentes. A structuring algorithm for decompilation. In In Pro-

ceedings of the XIX Conferencia Latinoamericana de Informatica,

pages 267–276, Buenos Aires, Argentina, 1993.

[Cif94] Cristina Cifuentes. Structuring decompiled graphs. Technical Re-

port FIT-TR-1994-05, Department of Computer Science, Univer-

sity of Tasmania, Australia, 19, 1994.

[Cif96] Cristina Cifuentes. Structuring decompiled graphs. In Proceed-

ings of the International Conference on Compiler Construction

(CC’96). Lecture Notes in Computer Science 1060. Linkoping, Swe-

den., pages 91–105, April 1996.

[Cli95] Cliff Click. Global code motion/Global value numbering. In Pro-

ceedings of the ACM SIGPLAN ’95 Conference on Programming

Language Design and Implementation, pages 246–257, La Jolla,

California, June 1995.

[Cor] Standard Performance Evaluation Corporation. Description of the

cfp2000 benchmark.

[CP95] C. Click and M. Paleczny. A simple graph-based intermediate repre-

sentation. In The First ACM SIGPLAN Workshop on Intermediate

Representations, San Francisco, CA, 1995.

165

[CS95] Keith Cooper and Taylor Simpson. SCC-based value numbering.

Technical Report CRPC-TR95636-S, Center for Research on Par-

allel Computation, Rice University, October 1995.

[CSV01] Keith Cooper, Taylor Simpson, and Christopher A. Vick. Operator

strength reduction. ACM Transactions on Programming Languages

and Systems, 23(5), September 2001.

[DRV00] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic

Parallelization. Birkhäuser, 2000.

[DSV03] A. Darte, R. Schreiber, and G. Villard. Lattice-based memory

allocation. In ACM CASES, pages 298–308, 2003.

[DSV04] A. Darte, R. Schreiber, and G. Villard. Lattice-based memory

allocation. Technical Report 2004-23, École Normale Supérieure de

Lyon, INRIA, 2004.

[DSV05] Alain Darte, Robert Schreiber, and Gilles Villard. Lattice-based

memory allocation. IEEE Trans. Computers, 54(10):1242–1257,

2005.

[dt07] The JGAP development team. JGAP documentation v3.2.2, 2007.

[DV94] A. Darte and F. Vivien. Automatic parallelization based on multi-

dimensional scheduling, 1994.

[DV95] A. Darte and F. Vivien. Revisiting the decomposition of Karp,

Miller and Winograd. Parallel Processing Letters, 5(4):551–562,

December 1995.

[Fea88a] P. Feautrier. Array expansion. In Proceedings of the Second Inter-

national Conference on Supercomputing, St. Malo, France, 1988.

166

[Fea88b] P. Feautrier. Parametric integer programming. Opera-

tionnelle/Operations Research, 22(3):243–268, 1988.

[Fea91] Paul Feautrier. Dataflow analysis of array and scalar references.

International Journal of Parallel Programming, 20(1):23–53 (or 23–

52??), 1991.

[Fea92a] Paul Feautrier. Some efficient solutions to the affine scheduling

problem. part I. one-dimensional time. International Journal of

Parallel Programming, 21(5):313–348, 1992.

[Fea92b] Paul Feautrier. Some efficient solutions to the affine scheduling

problem. part II. multidimensional time. International Journal of

Parallel Programming, 21(6):389–420, 1992.

[Fea96] Paul Feautrier. Automatic parallelization in the polytope model.

In The Data Parallel Programming Model, pages 79–103, 1996.

[Fea03] Paul Feautrier. Solving systems of affine (in)equalities: Pip’s user’s

guide. fourth version. Technical report, PRiSM - Laboratoire de

Recherche en Informatique, October 2003.

[FO01] Björn Franke and Michael F. P. O’Boyle. Compiler transformation

of pointers to explicit array accesses in dsp applications. In CC

’01: Proceedings of the 10th International Conference on Compiler

Construction, pages 69–85, London, UK, 2001. Springer-Verlag.

[FOW87] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program

dependence graph and its use in optimizations. ACM Transaction

on Programming Languages and Systems, 9(3):319–349, June 1987.

167

[GFL04] M. Griebl, P. Faber, and Ch. Lengauer. Space-time mapping

and tiling; a helpful combination. Concurrency and Computation:

Practice and Experience, 16:221–246, 2004.

[GHF+05] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Yukio Watan-

abe, and Takeshi Yamazaki. A novel simd architecture for the cell

heterogeneous chip-multiprocessor. In Hot Chips 17, August 2005.

[GHF+06] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Yukio Watanabe,

and Takeshi Yamazaki. Synergistic processing in cell’s multicore

architecture. IEEE Micro, March 2006.

[GLL95] Junjie Gu, Zhiyuan Li, and Gyungho Lee. Symbolic array dataflow

analysis for array privatization and program parallelization. In

Supercomputing ’95, 1995.

[GLW98] Martin Griebl, Christian Lengauer, and S. Wetzel. Code generation

in the polytope model. In IEEE PACT, pages 106–111, 1998.

[GR07] Gautam Gupta and Sanjay Rajopadhye. The Z-polyhedral model.

In PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium

on Principles and practice of parallel programming, pages 237–248,

New York, NY, USA, 2007. ACM Press.

[Gri00] M. Griebl. On the mechanical tiling of space-time mapped loop

nests. Technical Report MIP-0009, Fakultät für Mathematik und

Informatik, Universität Passau, 2000.

[hpf] High-performance fortran language specification version 1.0.

[HT01] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis us-

ing CLA: A million lines of c code in a second. In SIGPLAN Confer-

168

ence on Programming Language Design and Implementation, pages

254–263, 2001.

[IT88a] F. Irigoin and R. Triolet. Supernode partitioning. In POPL ’88:

Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on

Principles of programming languages [IT88b], pages 319–329.

[IT88b] F. Irigoin and R. Triolet. Supernode partitioning. In POPL ’88:

Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on

Principles of programming languages, pages 319–329, New York,

NY, USA, 1988. ACM Press.

[Kel96] Wayne Kelly. Optimization within a Unified Transformation

Framework. PhD thesis, University of Maryland, 1996.

[KPR95] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple

mappings. In Proceedings of the Fifth Symposium on the Frontiers

of Massively Parallel Computation (Frontiers’95), page 332. IEEE

Computer Society, 1995.

[KPR98] Wayne Kelly, William Pugh, and Evan Rosser. Code generation for

multiple mappings. Technical Report CS-TR-3317.1, University of

Maryland, Computer Science Department, October 1998.

[Len93] Christian Lengauer. Loop parallelization in the polytope model. In

International Conference on Concurrency Theory, pages 398–416,

1993.

[LeV92] H. LeVerge. A note on chernikova’s algorithm, 1992.

[LL97] A. W. Lim and M. S. Lam. Maximizing parallelism and minimiz-

ing synchronization with affine transforms. In Proceedings of the

169

Twenty-fourth Annual ACM Symposium on the Principles of Pro-

gramming Languages, Paris, France, 1997.

[LLL01] Amy W. Lim, Shih-Wei Liao, and Monica S. Lam. Blocking and

array contraction across arbitrarily nested loops using affine parti-

tioning. ACM SIGPLAN Notices, 36(7):103–112, 2001.

[MAL93] Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam.

Array-data flow analysis and its use in array privatization. In POPL

’93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 2–15, New York,

NY, USA, 1993. ACM Press.

[MD05a] Dominic Mallinson and Marc DeLoura. Cell: A new platform for

digital entertainment. Technical report, SCEA U.S. R & D, 2005.

http://research.scea.com/research/html/CellGDC05/index.html.

[MD05b] Dominic Mallison and Mark Deloura. CELL:

A new platform for digital entertainment

http://research.scea.com/research/html/cellgdc05/index.html,

2005.

[MN03] MathWorks and NIST. Jama: A java matrix package, 2003.

[MPJ+00] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz.

Smart memories: A modular reconfigurable architecture. In Proc.

of International Symposium on Comuter Architecture, pages 161–

171, June 2000.

[NR00] Sunder Phani Jumar Nookala and Tanguy Risset. A Library for

Z-Polyhedral Operations. Technical Report 1330, IRISA - Institut

De Recherche en Informatiq et Systèmes Aléatoires, 2000.

170

http://research.scea.com/research/html/CellGDC05/index.html

[PCS05] S. Pop, A. Cohen, and G. Silber. Induction variable analysis with

delayed abstractions. In In 2005 International Conference on High

Performance Embedded Architectures and Compilers, Barcelona,

Spain, 2005.

[Pug92] William Pugh. The omega test: a fast and practical integer pro-

gramming algorithm for dependence analysis. In Communication

of the ACM, August 1992.

[QR] F. Quilleré and S. Rajopadhye. On code-generation in the polyhe-

dral model.

[QRR96] Patrice Quinton, Sanjay Rajopadhye, and Tanguy Risset. On ma-

nipulating Z-polyhedra. Technical Report 1016, IRISA - Institut

De Recherche en Informatiq et Systèmes Aléatoires, 1996.

[QRW00] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient

nested loops from polyhedra. International Journal of Parallel Pro-

gramming, 28(5), October 2000.

[RCCT90] R.D. Rettberg, W.R. Crowther, P.P. Carvey, and R.S. Tomlinson.

The monarch parallel processor hardware design. Computer, 23:18–

30, April 1990.

[RR04] Lakshminarayanan Renganarayana and Sanjay Rajopadhye. A ge-

ometric programming framework for optimal multi-level tiling. In

High Performance Computing, Networking and Storage Conference

(SC2004), November 2004.

[SC04] Robert Schreiber and Darren C. Cronquist. Near-optimal allocation

of local memory arrays. Technical Report HPL-2004-24, Hewlett-

Packard Laboratories, February 2004.

171

[Sch86] Alexandeer Schrijver. Theory of Linear and Integer Programming.

John Wiley & Sons, Inc., 1986.

[SGI07] SGI, Inc. Reconfigurable Application-Specific Computing User’s

Guide, 2007. Document number 007-4718-006 available online at

http://techpubs.sgi.com/.

[Sim98] Loren Taylor Simpson. Value-Driven Redundancy Elimination.

PhD thesis, Rice University, 6, 1998.

[SJHM06] David A. Schwartz, Randall R. Judd, William J. Harrod, and

Dwight P. Manley. The vector signal image processing library 1.2

api. Technical report, HRL Laboratories, Space and Naval Warfare

Systems Center, Silicon Graphs Inc./Cray Research and Compaq

Computer Corp./Digital Equipment Corp., apr 2006.

[SL99] Yonghong Song and Zhiyuan Li. A compiler framework for tiling

imperfectly-nested loops. In Languages and Compilers for Parallel

Computing, pages 185–200, 1999.

[SL06] Rachid Seghir and Vincent Loechner. Memory optimization by

counting points in integer transformations of parametric polytopes.

In CASES ’06: Proceedings of the 2006 international conference on

Compilers, architecture and synthesis for embedded systems, pages

74–82, New York, NY, USA, 2006. ACM Press.

[SLM07] Rachid Seghir, Vincent Loechner, and Benoit Meister. Counting

points in integer affine transformations of parametric z-polytopes,

2007.

[SNG+06] K. Sankaralingam, R. Nagarajan, P. Gratz, R. Desikan, D. Gulati,

H. Hanson, C. Kim, H. Liu, N. Ranganathan, S. Sethumadhavan,

172

http://techpubs.sgi.com/

S. Sharif, P. Shivakumar, W. Yoder, R. McDonald, S.W. Keckler,

and D.C. Burger. The distributed microarchitecture of the trips

prototype processor. In 39th International Symposium on Microar-

chitecture (MICRO), December 2006.

[Tea02] The Polylib Team. Polylib user’s manual. Technical report, Uni-

versity of Louis Pasteur, Strasbourg, France, September 2002.

[TKM+02] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff,

Fae Ghodrat, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jae-

Wook Lee, Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski,

Nathan Shnidman, Volker Strumpenand Matt Frank, Saman Ama-

rasinghe, and Anant Agarwal. The raw microprocessor: A compu-

tational fabric for software circuits and general purpose programs.

Micro, Mar 2002.

[TP01] Peng Tu and David A. Padua. Automatic array privatization. In

Compiler Optimizations for Scalable Parallel Systems Languages,

pages 247–284, 2001.

[Tu95] Peng Tu. Automatic array privatization and demand-driven sym-

bolic analysis. Technical Report UIUCDCS-R-95-1911, University

of Illinios at Urbana-Campaign, May 1995.

[Vas07] Nicolas T. Vasilache. Scalable Program Optimization Techniques in

the Polyhedral Model. PhD thesis, Universit Paris Sud XI, Orsay,

September 2007.

[VBC06] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral code generation

in the real world. In Proceedings of the International Conference

on Compiler Construction (ETAPS CC’06), lncs, pages 185–201,

Vienna, Austria, March 2006. Springer-Verlag.

173

[WCES94] D. Weise, R. Crew, M. Ernst, and B. Steensgaard. Value de-

pendence graph: Representation without taxation. In ACM Sym-

posium on Principles of Programming Languages, pages 297–310,

1994.

[Wil93] Doran Wilde. A library for doing polyhedral operations. Techni-

cal Report 785, IRISA - Institut De Recherche en Informatiq et

Systèmes Aléatoires, December 1993.

[WL91] Michael E. Wolf and Monica Lam. A loop transformation theory

and an algorithm to maximize parallelism. IEEE Transactions on

Parallel and Distributed Systems, October 1991.

[WL94] Youfeng Wu and James R. Larus. Static branch frequency and

program profile analysis. Technical Report CS-TR-1994-1248, Uni-

versity of Wisconsin-Madison, 1994.

[WL02] John Whaley and Monica S. Lam. An efficient inclusion-based

points-to analysis for strictly-typed languages. In Proceedings of

the 9th International Static Analysis Symposium, September 2002.

[Wol96] Michael Wolfe. High Performance Compilers For Parallel Comput-

ing. Addison Wesley, 1996.

[WZ91] M. Wegman and K. Zadeck. Constant propagation with condi-

tional branches. ACM Transactions on Programming Languages

and Systems, 13(2):181–210, April 1991.

[XHG05] J. Xue, Q. Huang, and M. Guo. Enabling loop fusion and tiling for

cache performance by fixing fusion-preventing data dependences. In

International Conference on Parallel Processing (ICPP’05), pages

107–115, 2005.

174

[Xue97] J. Xue. On tiling as a loop transformation. Parallel Processing

Letters, 7(4):409–424, 1997.

175

Index

affine scheduling, 34
array contraction, 95
array expansion, 30

blocking, see tiling

data locality
spatial locality, 5, 41
temporal locality, 5, 41

double-buffering, 74

grouping, see tiling

jamming, 94

modular mapping
see modulo mapping, 96

modulo mapping, 96
multi-buffering, 74

placement, 57
polyhedral model, 10
profitability, 44

raising, 117
register tiling, 94

strided, 41

task, 42
tiling

data tiling, 42
iteration tiling, 42

176

	Introduction
	Obtaining R-Stream
	Automatic Mapping
	Parallelism extraction and enhancement
	Locality optimizations
	Iteration space tiling

	Computation and data distribution
	Data layout optimizations
	Bulk communication generation (a.k.a. DMA generation)

	Limitations of R-Stream
	Organization

	The Polyhedral Model
	Polyhedra and polytopes
	Parameters
	Z-polyhedra
	Domain and Z-domain

	Modeling iteration spaces
	Modeling dependences
	Space-time mappings
	Example
	Further Readings

	Mapper Architecture
	The Generalized Dependence Graph
	Space-time mapping
	Dependence edges
	Example 1
	Example 2
	Related Works

	Polyhedral Mapper Infrastructure
	Array Expansion
	Related works
	Current algorithm
	Example

	Affine Scheduling
	General template of affine scheduling algorithms
	Feautrier's algorithm
	Darte and Vivien's algorithm
	Lim and Lam's affine partitioning algorithm
	Summary
	Our Algorithm
	Computing ``wavy'' schedules

	Summary and Related Works

	Forming Kernels: Grouping and Tiling
	Grouping
	Tiling
	Orthogonal tiling
	Constraints derived from the target architecture

	Formulation of the tiling problem
	Hoisting permutable loops
	Loop sinking instead of hoisting
	Tilability
	Tiling as a search: beta tree
	Consequences of our tiling paradigm
	Implementation: generic search

	Interaction with other mapper components
	Future improvements

	Processor Placement
	Algorithm
	Single-Program Multiple-Data (SPMD) code generation
	Minimizing communications
	Eliminating host broadcasts
	Related works

	Local Memory Compaction
	Motivating Examples
	Algorithm
	Group related references
	Hermite Decomposition
	Example 1
	Example 2

	Unimodular Reindexing
	Solving the optimization problem

	Generating bulk communication
	Related Work

	Multi-buffering
	Multi-buffering with loop interchange
	Multi-buffering with loop jamming
	Shifting problem
	New multi-buffering scheme: summary

	Hierarchical multi-buffering

	DMA Optimization
	Example
	Algorithm
	Special cases
	Big packets
	Strides not allowed on one side
	Strides not allowed on any sides
	Bijection between both sides

	Further optimization
	Simplifying the data transfers by transferring more
	Optimizing for data transfer size
	Optimizing for memory banks

	Implementation

	Register Tiling
	Implementation

	Array Contraction
	Lattice based framework
	Algorithm
	Example

	Polyhedral Scanning
	Example
	Formal statement
	Related works
	R-Stream's polyhedral scanner
	Performance improvements
	Code quality improvements
	Controlling domain splitting
	Constraints tightening
	Predicate and stride hoisting
	Controlling code duplication

	The R-Stream Compiler Infrastructure
	The Sprig IR
	Heterogeneous compilation
	Source level type system
	Source code regeneration

	Scalar optimizations and analyses

	Raising: IR to Polyhedral Form
	Raising algorithm
	Pointer analysis
	Mappable region identification
	Inlining
	Index, data and predicate values classification
	If-conversion
	Statement formation
	Base address and parameters detection
	Recurrence analysis
	GDG building

	Future extensions
	Automatic region selection and inlining
	Abstract data types via struct and unions arguments
	Heap memory management and array delinearization
	Geometric recurrences
	Modulo recurrences

	Lowering: From Polyhedral Form to Target Code
	Syntax reconstruction
	Algorithm

	CELL Backend
	Local memory and DMA
	CELL target API
	DMA primitives
	Memory primitives
	Synchronization primitives
	Cell mapping example
	Manual SIMDization

	TRIPS Backend
	TRIPS target API
	Mapping example

	SMP Backend
	R-Stream and Polymorphous Computer Architectures
	PCA program objectives
	PCA hardware strategy
	PCA software strategy
	Need for definition of ``mapping''
	Power and limitations of polyhedral compilers
	Need for a uniform abstraction, phase fusion
	Power efficiency
	Dynamic Morphing

	Transitions
	Summary

